295 research outputs found

    Spectroscopy and Formation of Lanthanum-Hydrocarbon Radicals Formed by Association and Carbon-Carbon Bond Cleavage of Isoprene

    Get PDF
    La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage

    Lanthanum-Mediated Dehydrogenation of Butenes: Spectroscopy and Formation of La(C\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e6\u3c/sub\u3e) Isomers

    Get PDF
    La atom reactions with 1-butene, 2-butene, and isobutene are carried out in a laser-vaporization molecular beam source. The three reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butenes. The dehydrogenated species La(C4H6) is the major product, which is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectrum of La(C4H6) produced from the La+1-butene reaction exhibits two band systems, whereas the MATI spectra produced from the La+2-butene and isobutene reactions display only a single band system. Each of these spectra shows a strong origin band and several vibrational progressions. The two band systems from the spectrum of the 1-butene reaction are assigned to the ionization of two isomers: La[C(CH2)3] (Iso A) and La(CH2CHCHCH2) (Iso B), and the single band system from the spectra of the 2-butene and isobutene reactions is attributed to Iso B and Iso A, respectively. The ground electronic states are 2A1 (C3v) for Iso A and 2Aâ€Č (Cs) for Iso B. The ionization of the doublet state of each isomer removes a La 6s-based electron and leads to the 1A1 ion of Iso A and the 1Aâ€Č ion of Iso B. The formation of both isomers consists of La addition to the C=C double bond, La insertion into two C(sp3)—H bonds, and H2 elimination. In addition to these steps, the formation of Iso A from the La+1-butene reaction may involve the isomerization of 1-butene to isobutene prior to the C—H bond activation, whereas the formation of Iso B from the La+trans-2-butene reaction may include the trans- to cis-butene isomerization after the C—H bond activation

    A New 95 GHz Methanol Maser Catalog: I. Data

    Get PDF
    The Purple Mountain Observatory 13.7 m radio telescope has been used to search for 95 GHz (80_0--71_1A+^+) class I methanol masers towards 1020 Bolocam Galactic Plane Survey (BGPS) sources, leading to 213 detections. We have compared the line width of the methanol and HCO+^+ thermal emission in all of the methanol detections and on that basis we find 205 of the 213 detections are very likely to be masers. This corresponds to an overall detection rate of 95 GHz methanol masers towards our BGPS sample of 20%. Of the 205 detected masers 144 (70%) are new discoveries. Combining our results with those of previous 95 GHz methanol masers searches, a total of four hundred and eighty-one 95 GHz methanol masers are now known, we have compiled a catalog listing the locations and properties of all known 95 GHz methanol masers.Comment: 18 pages, 7 figures, 8 tables, accepted for publication in ApJ

    Lanthanum-Mediated Dehydrogenation of 1- and 2-Butynes: Spectroscopy and Formation of La(C\u3csub\u3e4\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e) Isomers

    Get PDF
    La atom reactions with 1-butyne and 2-butyne are carried out in a laser-vaporization molecular beam source. Both reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butynes. The dehydrogenated species La(C4H4) is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of La(C4H4) produced from the two reactions exhibit two identical transitions, each consisting of a strong origin band and several vibrational intervals. The two transitions are assigned to the ionization of two isomers: La(η4–CH2CCCH2) (Iso A) and La(η4–CH2CHCCH) (Iso B). The ground electronic states are 2A1 (C2v) for Iso A and 2A (C1) for Iso B. The ionization of the doublet state of each isomer removes a La 6s-based electron and results in a 1A1 ion of Iso A and a 1A ion of Iso B. The formation of Iso A from 2-butyne and Iso B from 1-butyne involves the addition of La to the C≡C triple bond, the activation of two C(sp3)–H bonds, and concerted elimination of a H2 molecule. The formation of Iso A from 1-butyne and Iso B from 2-butyne involves the isomerization of the two butynes to 1,2-butadiene in addition to the concerted H2 elimination

    Spectroscopy and Formation of Lanthanum-Hydrocarbon Radicals Formed by C—H and C—C Bond Activation of 1-Pentene and 2-Pentene

    Get PDF
    La atom reactions with 1-pentene and 2-pentene are carried out in a laser-vaporization molecular beam source. The two reactions yield the same metal-hydrocarbon products from the dehydrogenation and carbon–carbon bond cleavage of the pentene molecules. The dehydrogenated species La(C5H8) is the major product, whereas the carbon–carbon bond cleaved species La(C2H2) and La(C3H4) are the minor ones. La(C10H18) is also observed and is presumably formed by La(C5H8) addition to a second pentene molecule. La(C5H8) and La(C2H2) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of each species from the two reactions exhibit the same transitions. Adiabatic ionization energies and metal-ligand stretching frequencies are determined for the two species, and additional methyl bending and torsional frequencies are measured for the larger one. Five possible isomers are considered for La(C5H8), and a C1 metallacyclopentene (Iso A) is identified as the most possible isomer. La(C2H2) is confirmed to be a C2v metallacyclopropene. The ground electronic state of each species is a doublet with a La 6s1-based electron configuration, and ionization yields a singlet state. The formation of the lanthanacyclopentene includes La addition to the C=C double bond, La insertion into two C(sp3)—H bonds, and concerted dehydrogenation. For the 2-pentene reaction, the formation of the five-membered ring may also involve 2-pentene to 1-pentene isomerization. In addition to the metal addition and insertion, the formation of the three-membered metallacycle from 1-pentene includes C(sp3)—C(sp3) bond breakage and hydrogen migration from La to C(sp3), whereas its formation from 2-pentene may involve the ligand isomerization

    Image Retrieval Method Combining Bayes and SVM Classifier Based on Relevance Feedback with Application to Small-scale Datasets

    Get PDF
    A vast amount of images has been generated due to the diversity and digitalization of devices for image acquisition. However, the gap between low-level visual features and high-level semantic representations has been a major concern that hinders retrieval accuracy. A retrieval method based on the transfer learning model and the relevance feedback technique was formulated in this study to optimize the dynamic trade-off between the structural complexity and retrieval performance of the small- and medium-scale content-based image retrieval (CBIR) system. First, the pretrained deep learning model was fine-tuned to extract features from target datasets. Then, the target dataset was clustered into the relative and irrelative image library by exploring the Bayes classifier. Next, the support vector machine (SVM) classifier was used to retrieve similar images in the relative library. Finally, the relevance feedback technique was employed to update the parameters of both classifiers iteratively until the request for the retrieval was met. Results demonstrate that the proposed method achieves 95.87% in classification index F1 - Score, which surpasses that of the suboptimal approach DCNN-BSVM by 6.76%. The performance of the proposed method is superior to that of other approaches considering retrieval criteria as average precision, average recall, and mean average precision. The study indicates that the Bayes + SVM combined classifier accomplishes the optimal quantities more efficiently than only either Bayes or SVM classifier under the transfer learning framework. Transfer learning skillfully excels training from scratch considering the feature extraction modes. This study provides a certain reference for other insights on applications of small- and medium-scale CBIR systems with inadequate samples

    Analysis and prediction of marine heatwaves in the Western North Pacific and Chinese coastal region

    Get PDF
    Over the past decade, marine heatwaves (MHWs) research has been conducted in almost all of the world’s oceans, and their catastrophic effects on the marine environment have gradually been recognized. Using the second version of the Optimal Interpolated Sea Surface Temperature analysis data (OISSTV2) from 1982 to 2014, this study analyzes six MHWs characteristics in the Western North Pacific and Chinese Coastal region (WNPCC, 100°E ∌ 180°E, 0° ∌ 65°N). MHWs occur in most WNPCC areas, with an average frequency, duration, days, cumulative intensity, maximum intensity, and mean intensity of 1.95 ± 0.21 times/year, 11.38 ± 1.97 days, 22.06 ± 3.84 days, 18.06 ± 7.67 °Cdays, 1.84 ± 0.50°C, and 1.49 ± 0.42 °C, respectively, in the historical period (1982 ~ 2014). Comparing the historical simulation results of 19 models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) with the OISSTV2 observations, five best-performing models (GFDL-CM4, GFDL-ESM4, AWI-CM-1-1-MR, EC-Earth3-Veg, and EC-Earth3) are selected for MHWs projection (2015 ~ 2100). The MHWs characteristics projections from these five models are analyzed in detail under the Shared Socio-economic Pathway (SSP) 1-2.6, 2-4.5 and 5-8.5 scenarios. The projected MHWs characteristics under SSP5-8.5 are more considerable than those under SSP1-2.6 and 2-4.5, except for the MHWs frequency. The MHWs cumulative intensity is 96.36 ± 56.30, 175.44 ± 92.62, and 385.22 ± 168.00 °Cdays under SSP1-2.6, 2-4.5 and 5-8.5 scenarios, respectively. This suggests that different emission scenarios have a crucial impact on MHW variations. Each MHWs characteristic has an obvious increasing trend except for the annual occurrences. The increase rate of MHWs cumulative intensity for these three scenarios is 1.02 ± 0.83, 3.83 ± 1.43, and 6.70 ± 2.61 °Cdays/year, respectively. The MHWs occurrence area in summer is slightly smaller than in winter, but the MHWs average intensity is stronger in summer than in winter

    Mass-Analyzed Threshold Ionization Spectroscopy of Lanthanum-Hydrocarbon Radicals Formed by C—H Bond Activation of Propene

    Get PDF
    La(C3H4) and La(C3H6) are observed from the reaction of laser-vaporized La atoms with propene by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. Two isomers of La(C3H4) are identified as methyl-lanthanacyclopropene [La(CHCCH3)] (Cs) and lanthanacyclobutene [La(CHCHCH2)] (C1); La(C3H6) is determined to be H—La(η3-allyl) (Cs), a C—H bond inserted species. All three metal-hydrocarbon radicals prefer a doublet ground state with a La 6s-based electron configuration. Ionization of the neutral doublet state of each of these radicals produces a singlet ion state by removing the La-based 6s electron. The threshold ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. The formation of the three radicals is investigated by density functional theory computations. The inserted species is formed by La inserting into an allylic C—H bond and lanthanacyclopropene by concerted vinylic H2 elimination, whereas lanthanacyclobutene involves both allylic and vinylic dehydrogenations. The inserted species is identified as an intermediate for the formation of lanthanacyclobutene

    Spectroscopy and Formation of Lanthanum-Hydrocarbon Radicals Formed by C—C Bond Cleavage and Coupling of Propene

    Get PDF
    La reaction with propene is carried out in a laser-vaporization molecular beam source. Three La-hydrocarbon radicals are characterized by mass-analyzed threshold ionization (MATI) spectroscopy. One of these radicals is methylenelanthanum [La(CH2)] (Cs), a Schrock-type metal carbene. The other two are a five-membered 1-lanthanacyclopent-3-en [La(CH2CHCHCH2)] (Cs) and a tetrahedron-like trimethylenemethanelanthanum [La(C(CH2)3)] (C3v). Adiabatic ionization energies and metal-ligand stretching and hydrocarbon-based bending frequencies of these species are measured from the MATI spectra, preferred structures and electronic states are identified by comparing the experimental measurements and spectral simulations, and reaction pathways for the formation of the metal-hydrocarbon radicals are investigated with density functional theory calculations. All three radicals prefer doublet ground electronic states with La 6s1-based valence electron configurations, and singly charged cations favor singlet states generated by the removal of the La 6s1 electron. The metal-carbene radical is formed via multi-step carbon-carbon cleavage involving metallacyclization, ÎČ-hydrogen migration, and metal insertion. The metal-carbene radical formed in the primary reaction reacts with a second propene molecule to form the five-membered-ring and tetrahedron-like isomers through distinct carbon-carbon coupling paths
    • 

    corecore