44 research outputs found

    Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress

    No full text
    Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs

    Energy Efficiency Optimization for Multi-cell Massive MIMO : Centralized and Distributed Power Allocation Algorithms

    No full text
    This paper investigates the energy efficiency (EE) optimization in downlink multi-cell massive multiple-input multiple-output (MIMO). In our research, the statistical channel state information (CSI) is exploited to reduce the signaling overhead. To maximize the minimum EE among the neighbouring cells, we design the transmit covariance matrices for each base station (BS). Specifically, optimization schemes for this max-min EE problem are developed, in the centralized and distributed ways, respectively. To obtain the transmit covariance matrices, we first find out the closed-form optimal transmit eigenmatrices for the BS in each cell, and convert the original transmit covariance matrices designing problem into a power allocation one. Then, to lower the computational complexity, we utilize an asymptotic approximation expression for the problem objective. Moreover, for the power allocation design, we adopt the minorization maximization method to address the non-convexity of the ergodic rate, and use Dinkelbach’s transform to convert the max-min fractional problem into a series of convex optimization subproblems. To tackle the transformed subproblems, we propose a centralized iterative water-filling scheme. For reducing the backhaul burden, we further develop a distributed algorithm for the power allocation problem, which requires limited inter-cell information sharing. Finally, the performance of the proposed algorithms are demonstrated by extensive numerical results.peerReviewe

    Cucurbitacin Contents in Hemsleya dolichocarpa

    No full text

    Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control

    No full text
    Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs

    Giant magneto-photoluminescence at ultralow field in organic microcrystal arrays for on-chip optical magnetometer

    No full text
    Abstract Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices

    Numerical Simulation Study on Mechanical Characteristics and Width Optimization of Narrow Coal Pillar in Gob-Side Coal Seam Tunnel

    No full text
    To investigate the influence of coal pillar width on the stress variation of narrow coal pillar (NCP) in the gob-side tunnel in an inclined thick coal seam, theoretical analysis, numerical modeling, and field monitoring are performed to determine the optimal width of the narrow coal pillars in inclined coal seams. The mechanical characteristics of the NCP for varying widths were investigated. Furthermore, vertical and horizontal stress were calculated for various widths of the NCP. The results revealed that with the rise in the width, the vertical stress initially increased dramatically and then stabilized, whereas the mean horizontal stress increased gradually. The mathematical relation between stress and NCP widths was represented by two fitting equations. The evolution process of the plastic zone in the NCP under various widths and the damage form of various widths were obtained; that is, when the width was small, the position of the roadway near the shoulder corner of NCP was inclined to the top of NCP. The field monitoring data revealed that the optimum NCP width was 4 m. This NCP width could stabilize the roadway and improve the loss prevention of the NCP at the gob-side tunnel of similar mines
    corecore