357 research outputs found

    Discrete Temporal Models of Social Networks

    Full text link
    We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a useful new framework for modeling time-evolving social networks, and rewiring networks from other domains such as gene regulation circuitry, and communication networks

    Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized Smoothing

    Full text link
    Randomized smoothing is the primary certified robustness method for accessing the robustness of deep learning models to adversarial perturbations in the l2-norm, by adding isotropic Gaussian noise to the input image and returning the majority votes over the base classifier. Theoretically, it provides a certified norm bound, ensuring predictions of adversarial examples are stable within this bound. A notable constraint limiting widespread adoption is the necessity to retrain base models entirely from scratch to attain a robust version. This is because the base model fails to learn the noise-augmented data distribution to give an accurate vote. One intuitive way to overcome this challenge is to involve a custom-trained denoiser to eliminate the noise. However, this approach is inefficient and sub-optimal. Inspired by recent large model training procedures, we explore an alternative way named PEFTSmoothing to adapt the base model to learn the Gaussian noise-augmented data with Parameter-Efficient Fine-Tuning (PEFT) methods in both white-box and black-box settings. Extensive results demonstrate the effectiveness and efficiency of PEFTSmoothing, which allow us to certify over 98% accuracy for ViT on CIFAR-10, 20% higher than SoTA denoised smoothing, and over 61% accuracy on ImageNet which is 30% higher than CNN-based denoiser and comparable to the Diffusion-based denoiser

    A state-space mixed membership blockmodel for dynamic network tomography

    Full text link
    In a dynamic social or biological environment, the interactions between the actors can undergo large and systematic changes. In this paper we propose a model-based approach to analyze what we will refer to as the dynamic tomography of such time-evolving networks. Our approach offers an intuitive but powerful tool to infer the semantic underpinnings of each actor, such as its social roles or biological functions, underlying the observed network topologies. Our model builds on earlier work on a mixed membership stochastic blockmodel for static networks, and the state-space model for tracking object trajectory. It overcomes a major limitation of many current network inference techniques, which assume that each actor plays a unique and invariant role that accounts for all its interactions with other actors; instead, our method models the role of each actor as a time-evolving mixed membership vector that allows actors to behave differently over time and carry out different roles/functions when interacting with different peers, which is closer to reality. We present an efficient algorithm for approximate inference and learning using our model; and we applied our model to analyze a social network between monks (i.e., the Sampson's network), a dynamic email communication network between the Enron employees, and a rewiring gene interaction network of fruit fly collected during its full life cycle. In all cases, our model reveals interesting patterns of the dynamic roles of the actors.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS311 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gradient-Guided Dynamic Efficient Adversarial Training

    Full text link
    Adversarial training is arguably an effective but time-consuming way to train robust deep neural networks that can withstand strong adversarial attacks. As a response to the inefficiency, we propose the Dynamic Efficient Adversarial Training (DEAT), which gradually increases the adversarial iteration during training. Moreover, we theoretically reveal that the connection of the lower bound of Lipschitz constant of a given network and the magnitude of its partial derivative towards adversarial examples. Supported by this theoretical finding, we utilize the gradient's magnitude to quantify the effectiveness of adversarial training and determine the timing to adjust the training procedure. This magnitude based strategy is computational friendly and easy to implement. It is especially suited for DEAT and can also be transplanted into a wide range of adversarial training methods. Our post-investigation suggests that maintaining the quality of the training adversarial examples at a certain level is essential to achieve efficient adversarial training, which may shed some light on future studies.Comment: 14 pages, 8 figure

    Towards Verifying the Geometric Robustness of Large-scale Neural Networks

    Full text link
    Deep neural networks (DNNs) are known to be vulnerable to adversarial geometric transformation. This paper aims to verify the robustness of large-scale DNNs against the combination of multiple geometric transformations with a provable guarantee. Given a set of transformations (e.g., rotation, scaling, etc.), we develop GeoRobust, a black-box robustness analyser built upon a novel global optimisation strategy, for locating the worst-case combination of transformations that affect and even alter a network's output. GeoRobust can provide provable guarantees on finding the worst-case combination based on recent advances in Lipschitzian theory. Due to its black-box nature, GeoRobust can be deployed on large-scale DNNs regardless of their architectures, activation functions, and the number of neurons. In practice, GeoRobust can locate the worst-case geometric transformation with high precision for the ResNet50 model on ImageNet in a few seconds on average. We examined 18 ImageNet classifiers, including the ResNet family and vision transformers, and found a positive correlation between the geometric robustness of the networks and the parameter numbers. We also observe that increasing the depth of DNN is more beneficial than increasing its width in terms of improving its geometric robustness. Our tool GeoRobust is available at https://github.com/TrustAI/GeoRobust

    Component attention network for multimodal dance improvisation recognition

    Full text link
    Dance improvisation is an active research topic in the arts. Motion analysis of improvised dance can be challenging due to its unique dynamics. Data-driven dance motion analysis, including recognition and generation, is often limited to skeletal data. However, data of other modalities, such as audio, can be recorded and benefit downstream tasks. This paper explores the application and performance of multimodal fusion methods for human motion recognition in the context of dance improvisation. We propose an attention-based model, component attention network (CANet), for multimodal fusion on three levels: 1) feature fusion with CANet, 2) model fusion with CANet and graph convolutional network (GCN), and 3) late fusion with a voting strategy. We conduct thorough experiments to analyze the impact of each modality in different fusion methods and distinguish critical temporal or component features. We show that our proposed model outperforms the two baseline methods, demonstrating its potential for analyzing improvisation in dance.Comment: Accepted to 25th ACM International Conference on Multimodal Interaction (ICMI 2023

    A Crosstalk-Aware Timing Prediction Method in Routing

    Full text link
    With shrinking interconnect spacing in advanced technology nodes, existing timing predictions become less precise due to the challenging quantification of crosstalk-induced delay. During the routing, the crosstalk effect is typically modeled by predicting coupling capacitance with congestion information. However, the timing estimation tends to be overly pessimistic, as the crosstalk-induced delay depends not only on the coupling capacitance but also on the signal arrival time. This work presents a crosstalk-aware timing estimation method using a two-step machine learning approach. Interconnects that are physically adjacent and overlap in signal timing windows are filtered first. Crosstalk delay is predicted by integrating physical topology and timing features without relying on post-routing results and the parasitic extraction. Experimental results show a match rate of over 99% for identifying crosstalk nets compared to the commercial tool on the OpenCores benchmarks, with prediction results being more accurate than those of other state-of-the-art methods.Comment: 6 pages, 8 figure
    corecore