10 research outputs found
Highly Aromatic Flavan-3-ol Derivatives from Palaeotropical <i>Artocarpus lacucha</i> Buch.-Ham Possess Radical Scavenging and Antiproliferative Properties
Phytochemical investigation of leaves and stembark of Artocarpus lacucha collected in Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1–3), the four known compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol (7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging activities for 1 (EC50 = 9.4 ± 1.0 µmol mL−1), 2 (12.2 ± 1.1), 3 (10.0 ± 1.5) and 4 (19.0 ± 2.6), remarkably lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and SW480 (colon carcinoma) cells, with IC50 values of 25 ± 6 and 34 ± 4 µM, respectively, whereas effects in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of 1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment
The Addition of High Doses of Hyaluronic Acid to a Biphasic Bone Substitute Decreases the Proinflammatory Tissue Response
Biphasic bone substitutes (BBS) are currently well-established biomaterials. Through their constant development, even natural components like hyaluronic acid (HY) have been added to improve both their handling and also their regenerative properties. However, little knowledge exists regarding the consequences of the addition of HY to their biocompatibility and the inflammatory tissue reactions. Thus, the present study was conducted, aiming to analyze the influence of two different amounts of high molecular weight HY (HMWHY), combined with a BBS, on in vitro biocompatibility and in vivo tissue reaction. Established in vitro procedures, using L929 cells, were used for cytocompatibility analyses under the test conditions of DIN EN:ISO 10993-5. For the in vivo part of the study, calvarial defects were created in 20 Wistar rats and subsequently filled with BBS, and BBS combined with two different HMWHY amounts, i.e., BBS + HY(L) and BBS + HY(H). As controls, empty defects were used. Established histological, immunohistochemical, and histomorphometrical methods were applied to analyze the tissue reactions to the three different materials, including the induction of pro- and anti-inflammatory macrophages and multinucleated giant cells (BMGCs). The in vitro results showed that none of the materials or compositions caused biological damage to the L929 cells and can be considered to be non-toxic. The in vivo results showed that only the addition of high doses of HY to a biphasic bone substitute significantly decreases the occurrence of pro-inflammatory macrophages (* p < 0.05), comparable to the numbers found in the control group, while no significant differences within the three study groups for M2-macrophages nor BMGCs were detected. In conclusion, the addition of different amounts of HMWHY does not seem to affect the inflammation response to BBS, while improving the material handling properties
Systematic Study on the Cytotoxic Potency of Commonly Used Dimeric Metal Precursors in Human Cancer Cell Lines
Abstract The cytotoxicities of seven dimeric metal species of the general formula [M(arene)Cl2]2, commonly used as precursors for complex synthesis and deemed biologically inactive, are investigated in seven commonly employed human cancer cell lines. Four of these complexes featured a ruthenium(II) core, where p‐cymene, toluene, benzene and indane were used as arenes. Furthermore, the osmium(II) p‐cymene dimer, as well as the Cp* dimers of rhodium(III) and its heavier analogue iridium(III) were included in this work (Cp*=1,2,3,4,5‐pentamethylcyclopentadienide). While the cytotoxic potencies of the ruthenium(II) and osmium(II) dimers are very low (or not even detectable at applicable concentrations), surprising activity, especially in cells from ovarian malignancies (with one or two‐digit micromolar IC50 values), have been found for the rhodium(III) and iridium(III) representatives. This publication is aimed at all researchers using synthetic procedures based on functionalization of these dimeric starting materials to rationalize changes in biological properties, especially cytotoxicity in cancer cells
Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium(II) Complexes and In-Depth In Vitro Studies
The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity
A Comparative Study on the Complexation of the Anticancer Iron Chelator VLX600 with Essential Metal Ions
As cancer cells exhibit an increased uptake of iron, targeting the
interaction with iron has become a straightforward strategy in the fight against
cancer. This work comprehensively characterizes the chemical properties of 6-
methyl-3-{(2E)-2-[1-(2-pyridinyl)ethylidene]hydrazino}-5H-[1,2,4]triazino[5,6-
b]indole (VLX600), a clinically investigated iron chelator, in solution. Its
protonation processes, lipophilicity, and membrane permeability as well as its
complexation with essential metal ions were investigated using UV−visible,
electron paramagnetic resonance, and NMR spectroscopic and computational
methods. Formation constants revealed the following order of metal binding
affinity at pH 7.4: Cu(II) > Fe(II) > Zn(II). The structures of VLX600 (denoted
as HL) and the coordination modes in its metal complexes [Cu(II)(LH)Cl2],
[Cu(II)(L)(CH3OH)Cl], [Zn(II)(LH)Cl2], and [Fe(II)(LH)2](NO3)2 were
elucidated by single-crystal X-ray diffraction. Redox properties of the iron
complexes characterized by cyclic voltammetry showed strong preference of
VLX600 toward Fe(II) over Fe(III). In vitro cytotoxicity of VLX600 was determined in six different human cancer cell lines, with
IC50 values ranging from 0.039 to 0.51 μM. Premixing VLX600 with Fe(III), Zn(II), and Cu(II) salts in stoichiometric ratios had a
rather little effect overall, thus neither potentiating nor abolishing cytotoxicity. Together, although clinically investigated as an iron
chelator, this is the first comprehensive solution study of VLX600 and its interaction with physiologically essential metal ions