12 research outputs found

    Risk of low levels of blood group antibodies mediating hemolysis in ABO-incompatible neonates with negative three hemolysis tests

    Get PDF
    ObjectiveTo explore the risk of low-level blood group antibody-mediated hemolysis in ABO-incompatible newborns with negative three hemolysis tests, aiming to assist in the identification and management of neonatal jaundice.MethodsA retrospective case-control study was performed in 892 children with jaundice. The patients were divided into three groups: group I, ABO compatible, negative three hemolysis tests; group II, ABO incompatible, negative three hemolysis tests; and group III, ABO incompatible, positive three hemolysis tests. We analyzed the differences in clinical data, blood routine and biochemical laboratory results.Results(1) Patients in group II had higher levels of mean corpuscular volume (MCV), standard deviation of red blood cell volume distribution width (RDW-SD), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and bile acid (BA) than those in group I (P < 0.05). However, there were no statistically significant differences in the MCV, ALT, ALP and BA levels between groups II and III (P > 0.05). (2) Mean corpuscular hemoglobin concentration (MCHC) >359.5 g/L, cell volume distribution width (RDW-CV) >15.95%, and reticulocyte count (RET) >4.235% were identified as independent predictors of positive hemolysis test results (P < 0.001). The combination of MCHC, RDW-CV, and RET% yielded an AUC of 0.841.ConclusionLow-level blood group antibody-mediated hemolysis may occur in ABO-incompatible neonates even when three hemolysis tests are negative. Changes in liver function parameters must be monitored. The combination of MCHC, RDW-CV, and RET% can be used to improve the detection rate of HDN

    An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing

    Full text link
    Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users’ costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers’ resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center’s energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically

    The inflammatory markers combined with CA125 may predict postoperative survival in endometrial cancer

    Full text link
    Background Endometrial cancer (EC) has a high latency, making prognosis difficult to predict. Cancer antigen 125 (CA125) is not specific as a tumour marker for EC; however, complete blood count (CBC) inflammatory markers are associated with prognosis in various malignancies. Thus, this study investigated the value of CBC inflammatory markers combined with CA125 levels in predicting the prognosis of patients with EC.Methods In this study, 517 patients with EC were recruited between January 2015 and January 2022, and clinical characteristics, CBC inflammatory markers, and CA125 levels were assessed. Differences in each index at different EC stages and the correlation between the index and EC stage were analysed, and the influence of the index on EC prognosis was evaluated.Results Platelet distribution width (PDW) levels were significantly lower in patients with advanced EC than in those with early EC, whereas the systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and CA125 levels were significantly higher in patients with advanced EC (all P < 0.05). ROC curve and multivariate logistic regression analyses indicated that decreased PDW and increased CA125 levels were independent risk factors for EC staging progression. In addition, multivariate Cox regression analysis showed that the combination of low PDW and high CA125 (PDW + CA125 = 2) was an independent prognostic factor of survival in EC patients. Kaplan-Meier survival analysis indicated that patients with low PDW and high CA125 had worse overall survival.Conclusions The PDW and CA125 score may be an independent prognostic factor for postoperative overall survival in patients with EC and a useful marker for predicting the prognosis of these patients

    The application value of mean red blood cell volume and red blood cell volume distribution width combined with total serum bilirubin in the early screening of neonatal hemolytic disease

    Full text link
    Abstract Background The hemolytic nature of hemolytic disease of the newborn (HDN) is described as the abnormal destruction and decomposition of red blood cells, causing heterogeneous manifestations such as abnormal red blood cell volume and morphology. Mean corpuscular volume (MCV) and red blood cell volume distribution width (RDW) are commonly used parameters related to red blood cell volume. Total serum bilirubin (TSB) is routinely monitored among newborns. This study aims to explore the value of MCV and RDW, combined with TSB, to improve the efficiency of HDN diagnosis. Methods Three hundred eighty-eight children with HDN and 371 children with non-HDN pathological jaundice who were diagnosed and treated in the neonatal department of our hospital from January 2019 to December 2020 were included in the study. Clinical data collected include examination results of laboratory indicators, such as MCV, coefficient of variation of red blood cell volume distribution width (RDW-CV), standard deviation of red blood cell volume distribution width (RDW-SD), and TSB. The differences in the indicators between the two groups of children were retrospectively analyzed. Results 1) The detection rate of HDN in children in the early group was higher than that in the late group (P  163.3 μmol/L, MCV > 96.35fL, and RDW-CV > 16.05%, the diagnosis rate of HDN increased (P  96.35fL or RDW-CV > 16.05%, children with jaundice in three days of birth (especially children with TSB > 163.3 μmol/L) should be screened for HDN. A combination of TSB, MCV, and RDW-CV can improve the early detection rate of HDN, contribute to reduce the readmission rate and risk of hyperbilirubinemia

    Long Non-Coding RNAs: New Players in Plants

    Full text link
    During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs

    Genome-Wide Identification of Auxin-Responsive GH3 Gene Family in Saccharum and the Expression of ScGH3-1 in Stress Response

    Full text link
    Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding

    Ultrasonographic characteristics, genetic features, and maternal and fetal outcomes in fetuses with omphalocele in China: a single tertiary center study

    Full text link
    Abstract Background Patients with omphalocele, a midline abdominal wall defect at the umbilical cord base, have a low survival rate. However, the long-term outcomes of fetuses with prenatally diagnosed omphalocele have scarcely been studied. Therefore, we investigated the ultrasonographic features, genetic characteristics, and maternal and fetal outcomes of fetuses with omphalocele and provided a reference for the perinatal management of such cases. Methods A total of 120 pregnant females with fetal omphalocele were diagnosed using prenatal ultrasonography at the Fujian Provincial Maternity and Child Health Hospital from January 2015 to March 2022. Amniotic fluid or cord blood samples were drawn at different gestational weeks for routine karyotype analysis, chromosomal microarray analysis (CMA) detection, and whole exome sequencing (WES). The maternal and fetal outcomes were followed up. Results Among the 120 fetuses, 27 were diagnosed with isolated omphalocele and 93 with nonisolated omphalocele using prenatal ultrasonography. Cardiac anomalies were the most observed cause in 17 fetuses. Routine karyotyping and CMA were performed on 35 patients, and chromosomal abnormalities were observed in five patients, trisomy 18 in three, trisomy 13 in one, and chromosome 8–11 translocation in one patient; all were non-isolated omphalocele cases. Six nonisolated cases had normal CMA results and conventional karyotype tests, and further WES examination revealed one pathogenic variant and two suspected pathogenic variants. Of the 120 fetuses, 112 were successfully followed up. Eighty of the 112 patients requested pregnancy termination. Seven of the cases died in utero. A 72% 1-year survival rate was observed from the successful 25 live births. Conclusion The prognosis of fetuses with nonisolated omphalocele varies greatly, and individualized analysis should be performed to determine fetal retention carefully. Routine karyotyping with CMA testing should be provided for fetuses with omphalocele. WES is an option if karyotype and CMA tests are normal. If the fetal karyotype is normal and no associated abnormalities are observed, fetuses with omphalocele could have a high survival rate, and most will have a good prognosis

    WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane

    Full text link
    Sugarcane smut is a major fungal disease caused by Sporisorium scitamineum, which seriously reduces the yield and quality of sugarcane. In this study, 36 transcriptome data were collected from two sugarcane genotypes, YT93-159 (resistant) and ROC22 (susceptible) upon S. scitamineum infection. Data analysis revealed 20,273 (12,659 up-regulated and 7614 down-regulated) and 11,897 (7806 up-regulated and 4091 down-regulated) differentially expressed genes (DEGs) in YT93-159 and ROC22, respectively. A co-expression network was then constructed by weighted gene co-expression network analysis (WGCNA), which identified 5010 DEGs in 15 co-expressed gene modules. Four of the 15 modules, namely, Skyblue, Salmon, Darkorange, and Grey60, were significantly associated with smut resistance. The GO and KEGG enrichment analyses indicated that the DEGs involving in these four modules could be enriched in stress-related metabolic pathways, such as MAPK and hormone signal transduction, plant-pathogen interaction, amino acid metabolism, glutathione metabolism, and flavonoid, and phenylpropanoid biosynthesis. In total, 38 hub genes, including six from the Skyblue module, four from the Salmon module, 12 from the Darkorange module, and 16 from the Grey60 module, were screened as candidate hub genes by calculating gene connectivity in the corresponding network. Only 30 hub genes were amplifiable with RT-qPCR, of which 27 were up-regulated upon S. scitamineum infection. The results were consistent with the trend of gene expression in RNA-Seq, suggesting their positive roles in smut resistance. Interestingly, the expression levels of AOX, Cyb5, and LAC were higher in ROC22 than in YT93-159, indicating these three genes may act as negative regulators in response to S. scitamineum infection. This study revealed the transcriptome dynamics in sugarcane challenged by S. scitamineum infection and provided gene targets for smut resistance breeding in sugarcane

    Tumor acidification and GSH depletion by bimetallic composite nanoparticles for enhanced chemodynamic therapy of TNBC

    Full text link
    Abstract Chemodynamic therapy (CDT) based on intracellular Fenton reaction to produce highly cytotoxic reactive oxygen species (ROS) has played an essential role in tumor therapy. However, this therapy still needs to be improved by weakly acidic pH and over-expression of glutathione (GSH) in tumor microenvironment (TEM), which hinders its future application. Herein, we reported a multifunctional bimetallic composite nanoparticle MnO2@GA-Fe@CAI based on a metal polyphenol network (MPN) structure, which could reduce intracellular pH and endogenous GSH by remodeling tumor microenvironment to improve Fenton activity. MnO2 nanoparticles were prepared first and MnO2@GA-Fe nanoparticles with Fe3+ as central ion and gallic acid (GA) as surface ligands were prepared by the chelation reaction. Then, carbonic anhydrase inhibitor (CAI) was coupled with GA to form MnO2@GA-Fe@CAI. The properties of the bimetallic composite nanoparticles were studied, and the results showed that CAI could reduce intracellular pH. At the same time, MnO2 could deplete intracellular GSH and produce Mn2+ via redox reactions, which re-established the TME with low pH and GSH. In addition, GA reduced Fe3+ to Fe2+. Mn2+ and Fe2+ catalyzed the endogenous H2O2 to produce high-lever ROS to kill tumor cells. Compared with MnO2, MnO2@GA-Fe@CAI could reduce the tumor weight and volume for the xenograft MDA-MB-231 tumor-bearing mice and the final tumor inhibition rate of 58.09 ± 5.77%, showing the improved therapeutic effect as well as the biological safety. Therefore, this study achieved the high-efficiency CDT effect catalyzed by bimetallic through reshaping the tumor microenvironment. Graphical Abstrac

    Genome-Wide Identification, Characterization, and Expression Analysis of Glutamate Receptor-like Gene (<i>GLR</i>) Family in Sugarcane

    Full text link
    The plant glutamate receptor-like gene (GLR) plays a vital role in development, signaling pathways, and in its response to environmental stress. However, the GLR gene family has not been comprehensively and systematically studied in sugarcane. In this work, 43 GLR genes, including 34 in Saccharum spontaneum and 9 in the Saccharum hybrid cultivar R570, were identified and characterized, which could be divided into three clades (clade I, II, and III). They had different evolutionary mechanisms, the former was mainly on the WGD/segmental duplication, while the latter mainly on the proximal duplication. Those sugarcane GLR proteins in the same clade had a similar gene structure and motif distribution. For example, 79% of the sugarcane GLR proteins contained all the motifs, which proved the evolutionary stability of the sugarcane GLR gene family. The diverse cis-acting regulatory elements indicated that the sugarcane GLRs may play a role in the growth and development, or under the phytohormonal, biotic, and abiotic stresses. In addition, GO and KEGG analyses predicted their transmembrane transport function. Based on the transcriptome data, the expression of the clade III genes was significantly higher than that of the clade I and clade II. Furthermore, qRT-PCR analysis demonstrated that the expression of the SsGLRs was induced by salicylic acid (SA) treatment, methyl jasmonic acid (MeJA) treatment, and abscisic acid (ABA) treatment, suggesting their involvement in the hormone synthesis and signaling pathway. Taken together, the present study should provide useful information on comparative genomics to improve our understanding of the GLR genes and facilitate further research on their functions
    corecore