6 research outputs found

    Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    Full text link
    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow 'mock up' the effects of meson-induced exchange terms by adjusting the meson-nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this note, we show that the Coulomb exchange effects can be easily included with a good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation.Comment: 3 pages, 1 figure, Proceedings of the 20th Nuclear Physics Workshop "Marie & Pierre Curie", Kazimierz, Poland, 25-29 September, 201

    Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    No full text
    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow 'mock up' the effects of meson-induced exchange terms by adjusting the meson-nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this work, we show that the Coulomb exchange effects can be easily included with good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation

    The Impact of Abnormal Lipid Metabolism on the Occurrence Risk of Idiopathic Pulmonary Arterial Hypertension

    No full text
    The aim was to determine whether lipid molecules can be used as potential biomarkers for idiopathic pulmonary arterial hypertension (IPAH), providing important reference value for early diagnosis and treatment. Liquid chromatography–mass spectrometry-based lipidomic assays allow for the simultaneous detection of a large number of lipids. In this study, lipid profiling was performed on plasma samples from 69 IPAH patients and 30 healthy controls to compare the levels of lipid molecules in the 2 groups of patients, and Cox regression analysis was used to identify meaningful metrics, along with receiver operator characteristic curves to assess the ability of the lipid molecules to predict the risk of disease in patients. Among the 14 lipid subclasses tested, 12 lipid levels were significantly higher in IPAH patients than in healthy controls. Free fatty acids (FFA) and monoacylglycerol (MAG) were significantly different between IPAH patients and healthy controls. Logistic regression analysis showed that FFA (OR: 1.239, 95%CI: 1.101, 1.394, p p < 0.001) were independent predictors of IPAH development. Among the lipid subclasses, FFA and MAG have potential as biomarkers for predicting the pathogenesis of IPAH, which may improve the early diagnosis of IPAH
    corecore