28 research outputs found

    Forward Kinematics of Object Transport by a Multi-Robot System with Deformable Sheet

    Full text link
    We present object handling and transport by a multi-robot team with a deformable sheet as a carrier. Due to the deformability of the sheet and the high dimension of the whole system, it is challenging to clearly describe all the possible positions of the object on the sheet for a given formation of the multi-robot system. A complete forward kinematics (FK) method is proposed in this paper for object handling by an NN-mobile robot team with a deformable sheet. Based on the virtual variable cables model, a constrained quadratic problem (CQP) is formulated by combining the form closure and minimum potential energy conditions of the system. Analytical solutions to the CQP are presented and then further verified with the force closure condition. With the proposed FK method, all possible solutions are obtained with the given initial sheet shape and the robot team formation. We demonstrate the effectiveness, completeness, and efficiency of the FK method with simulation and experimental results.Comment: 8 pages, 6 figures, has been submitted to IEEE Robotics and Automation Letter

    Multi-Robot Object Transport Motion Planning with a Deformable Sheet

    Full text link
    Using a deformable sheet to handle objects is convenient and found in many practical applications. For object manipulation through a deformable sheet that is held by multiple mobile robots, it is a challenging task to model the object-sheet interactions. We present a computational model and algorithm to capture the object position on the deformable sheet with changing robotic team formations. A virtual variable cables model (VVCM) is proposed to simplify the modeling of the robot-sheet-object system. With the VVCM, we further present a motion planner for the robotic team to transport the object in a three-dimensional (3D) cluttered environment. Simulation and experimental results with different robot team sizes show the effectiveness and versatility of the proposed VVCM. We also compare and demonstrate the planning results to avoid the obstacle in 3D space with the other benchmark planner.Comment: 8 pages, 10 figures, accepted by RAL&CASE 2022 in June 24, 202

    Improving Multi-Person Pose Tracking with A Confidence Network

    Full text link
    Human pose estimation and tracking are fundamental tasks for understanding human behaviors in videos. Existing top-down framework-based methods usually perform three-stage tasks: human detection, pose estimation and tracking. Although promising results have been achieved, these methods rely heavily on high-performance detectors and may fail to track persons who are occluded or miss-detected. To overcome these problems, in this paper, we develop a novel keypoint confidence network and a tracking pipeline to improve human detection and pose estimation in top-down approaches. Specifically, the keypoint confidence network is designed to determine whether each keypoint is occluded, and it is incorporated into the pose estimation module. In the tracking pipeline, we propose the Bbox-revision module to reduce missing detection and the ID-retrieve module to correct lost trajectories, improving the performance of the detection stage. Experimental results show that our approach is universal in human detection and pose estimation, achieving state-of-the-art performance on both PoseTrack 2017 and 2018 datasets.Comment: Accepted by IEEE Transactions on Multimedia. 11 pages, 5 figure

    FHT-Map: Feature-based Hierarchical Topological Map for Relocalization and Path Planning

    Full text link
    Topological maps are favorable for their small storage compared to geometric map. However, they are limited in relocalization and path planning capabilities. To solve this problem, a feature-based hierarchical topological map (FHT-Map) is proposed along with a real-time map construction algorithm for robot exploration. Specifically, the FHT-Map utilizes both RGB cameras and LiDAR information and consists of two types of nodes: main node and support node. Main nodes will store visual information compressed by convolutional neural network and local laser scan data to enhance subsequent relocalization capability. Support nodes retain a minimal amount of data to ensure storage efficiency while facilitating path planning. After map construction with robot exploration, the FHT-Map can be used by other robots for relocalization and path planning. Experiments are conducted in Gazebo simulator, and the results demonstrate that the proposed FHT-Map can effectively improve relocalization and path planning capability compared with other topological maps. Moreover, experiments on hierarchical architecture are implemented to show the necessity of two types of nodes.Comment: 8 pages, 7figures, 2 table

    A Novel Graph-based Motion Planner of Multi-Mobile Robot Systems with Formation and Obstacle Constraints

    Full text link
    Multi-mobile robot systems show great advantages over one single robot in many applications. However, the robots are required to form desired task-specified formations, making feasible motions decrease significantly. Thus, it is challenging to determine whether the robots can pass through an obstructed environment under formation constraints, especially in an obstacle-rich environment. Furthermore, is there an optimal path for the robots? To deal with the two problems, a novel graphbased motion planner is proposed in this paper. A mapping between workspace and configuration space of multi-mobile robot systems is first built, where valid configurations can be acquired to satisfy both formation constraints and collision avoidance. Then, an undirected graph is generated by verifying connectivity between valid configurations. The breadth-first search method is employed to answer the question of whether there is a feasible path on the graph. Finally, an optimal path will be planned on the updated graph, considering the cost of path length and formation preference. Simulation results show that the planner can be applied to get optimal motions of robots under formation constraints in obstacle-rich environments. Additionally, different constraints are considered

    Inverse design of anisotropic bone scaffold based on machine learning and regenerative genetic algorithm

    Get PDF
    Introduction: Triply periodic minimal surface (TPMS) is widely used in the design of bone scaffolds due to its structural advantages. However, the current approach to designing bone scaffolds using TPMS structures is limited to a forward process from microstructure to mechanical properties. Developing an inverse bone scaffold design method based on the mechanical properties of bone structures is crucial.Methods: Using the machine learning and genetic algorithm, a new inverse design model was proposed in this research. The anisotropy of bone was matched by changing the number of cells in different directions. The finite element (FE) method was used to calculate the TPMS configuration and generate a back propagation neural network (BPNN) data set. Neural networks were used to establish the relationship between microstructural parameters and the elastic matrix of bone. This relationship was then used with regenerative genetic algorithm (RGA) in inverse design.Results: The accuracy of the BPNN-RGA model was confirmed by comparing the elasticity matrix of the inverse-designed structure with that of the actual bone. The results indicated that the average error was below 3.00% for three mechanical performance parameters as design targets, and approximately 5.00% for six design targets.Discussion: The present study demonstrated the potential of combining machine learning with traditional optimization method to inversely design anisotropic TPMS bone scaffolds with target mechanical properties. The BPNN-RGA model achieves higher design efficiency, compared to traditional optimization methods. The entire design process is easily controlled

    TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities

    Full text link
    Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations
    corecore