423 research outputs found

    Video-based Sign Language Recognition without Temporal Segmentation

    Full text link
    Millions of hearing impaired people around the world routinely use some variants of sign languages to communicate, thus the automatic translation of a sign language is meaningful and important. Currently, there are two sub-problems in Sign Language Recognition (SLR), i.e., isolated SLR that recognizes word by word and continuous SLR that translates entire sentences. Existing continuous SLR methods typically utilize isolated SLRs as building blocks, with an extra layer of preprocessing (temporal segmentation) and another layer of post-processing (sentence synthesis). Unfortunately, temporal segmentation itself is non-trivial and inevitably propagates errors into subsequent steps. Worse still, isolated SLR methods typically require strenuous labeling of each word separately in a sentence, severely limiting the amount of attainable training data. To address these challenges, we propose a novel continuous sign recognition framework, the Hierarchical Attention Network with Latent Space (LS-HAN), which eliminates the preprocessing of temporal segmentation. The proposed LS-HAN consists of three components: a two-stream Convolutional Neural Network (CNN) for video feature representation generation, a Latent Space (LS) for semantic gap bridging, and a Hierarchical Attention Network (HAN) for latent space based recognition. Experiments are carried out on two large scale datasets. Experimental results demonstrate the effectiveness of the proposed framework.Comment: 32nd AAAI Conference on Artificial Intelligence (AAAI-18), Feb. 2-7, 2018, New Orleans, Louisiana, US

    Online Filter Clustering and Pruning for Efficient Convnets

    Full text link
    Pruning filters is an effective method for accelerating deep neural networks (DNNs), but most existing approaches prune filters on a pre-trained network directly which limits in acceleration. Although each filter has its own effect in DNNs, but if two filters are the same with each other, we could prune one safely. In this paper, we add an extra cluster loss term in the loss function which can force filters in each cluster to be similar online. After training, we keep one filter in each cluster and prune others and fine-tune the pruned network to compensate for the loss. Particularly, the clusters in every layer can be defined firstly which is effective for pruning DNNs within residual blocks. Extensive experiments on CIFAR10 and CIFAR100 benchmarks demonstrate the competitive performance of our proposed filter pruning method.Comment: 5 pages, 4 figure

    Spatial and Temporal Mutual Promotion for Video-based Person Re-identification

    Full text link
    Video-based person re-identification is a crucial task of matching video sequences of a person across multiple camera views. Generally, features directly extracted from a single frame suffer from occlusion, blur, illumination and posture changes. This leads to false activation or missing activation in some regions, which corrupts the appearance and motion representation. How to explore the abundant spatial-temporal information in video sequences is the key to solve this problem. To this end, we propose a Refining Recurrent Unit (RRU) that recovers the missing parts and suppresses noisy parts of the current frame's features by referring historical frames. With RRU, the quality of each frame's appearance representation is improved. Then we use the Spatial-Temporal clues Integration Module (STIM) to mine the spatial-temporal information from those upgraded features. Meanwhile, the multi-level training objective is used to enhance the capability of RRU and STIM. Through the cooperation of those modules, the spatial and temporal features mutually promote each other and the final spatial-temporal feature representation is more discriminative and robust. Extensive experiments are conducted on three challenging datasets, i.e., iLIDS-VID, PRID-2011 and MARS. The experimental results demonstrate that our approach outperforms existing state-of-the-art methods of video-based person re-identification on iLIDS-VID and MARS and achieves favorable results on PRID-2011.Comment: Accepted by AAAI19 as spotligh

    Exploiting Spatial-Temporal Context for Interacting Hand Reconstruction on Monocular RGB Video

    Full text link
    Reconstructing interacting hands from monocular RGB data is a challenging task, as it involves many interfering factors, e.g. self- and mutual occlusion and similar textures. Previous works only leverage information from a single RGB image without modeling their physically plausible relation, which leads to inferior reconstruction results. In this work, we are dedicated to explicitly exploiting spatial-temporal information to achieve better interacting hand reconstruction. On one hand, we leverage temporal context to complement insufficient information provided by the single frame, and design a novel temporal framework with a temporal constraint for interacting hand motion smoothness. On the other hand, we further propose an interpenetration detection module to produce kinetically plausible interacting hands without physical collisions. Extensive experiments are performed to validate the effectiveness of our proposed framework, which achieves new state-of-the-art performance on public benchmarks.Comment: 16 page

    Contrastive Transformation for Self-supervised Correspondence Learning

    Full text link
    In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).Comment: To appear in AAAI 202

    MA2CL:Masked Attentive Contrastive Learning for Multi-Agent Reinforcement Learning

    Full text link
    Recent approaches have utilized self-supervised auxiliary tasks as representation learning to improve the performance and sample efficiency of vision-based reinforcement learning algorithms in single-agent settings. However, in multi-agent reinforcement learning (MARL), these techniques face challenges because each agent only receives partial observation from an environment influenced by others, resulting in correlated observations in the agent dimension. So it is necessary to consider agent-level information in representation learning for MARL. In this paper, we propose an effective framework called \textbf{M}ulti-\textbf{A}gent \textbf{M}asked \textbf{A}ttentive \textbf{C}ontrastive \textbf{L}earning (MA2CL), which encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space. Specifically, we use an attention reconstruction model for recovering and the model is trained via contrastive learning. MA2CL allows better utilization of contextual information at the agent level, facilitating the training of MARL agents for cooperation tasks. Extensive experiments demonstrate that our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios. Our code can be found in \url{https://github.com/ustchlsong/MA2CL
    • …
    corecore