463 research outputs found
Quantum-optical influences in optoelectronics - an introduction
This focused review discusses the increasing importance of quantum optics in the physics and engineering of optoelectronic components. Two influences relating to cavity quantum electrodynamics are presented. One involves the development of low threshold lasers, when the channeling of spontaneous emission into the lasing mode becomes so efficient that the concept of lasing needs revisiting. The second involves the quieting of photon statistics to produce single-photon sources for applications such as quantum information processing. An experimental platform, consisting of quantum-dot gain media inside micro- and nanocavities, is used to illustrate these influences of the quantum mechanical aspect of radiation. An overview is also given on cavity quantum electrodynamics models that may be applied to analyze experiments or design devices.EC/FP7/615613/EU/External Quantum Control of Photonic Semiconductor Nanostructures/EXQUISIT
Exceeding the Manley-Rowe quantum efficiency limit in an optically pumped THz amplifier
Using a microscopic theory based on the Maxwell-semiconductor Bloch
equations, we investigate the possibility of an optically-assisted
electrically-driven THz quantum cascade laser. Whereas in optical conversion
schemes the power conversion efficiency is limited by the Manley-Rowe relation,
the proposed optically-assisted scheme can achieve higher efficiency by
coherently recovering the optical pump energy. Furthermore, due to quantum
coherence effects the detrimental effects of scattering are mitigated
Theory of emission from an active photonic lattice
The emission from a radiating source embedded in a photonic lattice is
calculated. The analysis considers the photonic lattice and free space as a
combined system. Furthermore, the radiating source and electromagnetic field
are quantized. Results show the deviation of the photonic lattice spectrum from
the blackbody distribution, with intracavity emission suppressed at certain
frequencies and enhanced at others. In the presence of rapid population
relaxation, where the photonic lattice and blackbody populations are described
by the same equilibrium distribution, it is found that the enhancement does not
result in output intensity exceeding that of the blackbody at the same
frequency. However, for slow population relaxation, the photonic lattice
population has a greater tendency to deviate from thermal equilibrium,
resulting in output intensities exceeding those of the blackbody, even for
identically pumped structures.Comment: 19 pages, 11 figure
- …