11,232 research outputs found

    Upper Pseudogap Phase: Magnetic Characterizations

    Full text link
    It is proposed that the upper pseudogap phase (UPP) observed in the high-Tc cuprates correspond to the formation of spin singlet pairing under the bosonic resonating-valence-bond (RVB) description. We present a series of evidence in support of such a scenario based on the calculated magnetic properties including uniform spin susceptibility, spin-lattice and spin-echo relaxation rates, which consistently show that strong spin correlations start to develop upon entering the UPP, being enhanced around the momentum (\pi, \pi) while suppressed around (0, 0). The phase diagram in the parameter space of doping concentration, temperature, and external magnetic field, is obtained based on the the bosonic RVB theory. In particular, the competition between the Zeeman splitting and singlet pairing determines a simple relation between the "critical" magnetic field, H_{PG}, and characteristic temperature scale, T0, of the UPP. We also discuss the magnetic behavior in the lower pseudogap phase at a temperature Tv lower than T0, which is characterized by the formation of Cooper pair amplitude where the low-lying spin fluctuations get suppressed at both (0, 0) and (\pi, \pi). Properties of the UPP involving charge channels will be also briefly discussed.Comment: 11 pages, 5 figures, final version to appear in PR

    Topological nodal states in circuit lattice

    Full text link
    The search for artificial structure with tunable topological properties is an interesting research direction of today's topological physics. Here, we introduce a scheme to realize `topological semimetal states' with a three-dimensional periodic inductor-capacitor (LC) circuit lattice, where the topological nodal-line state and Weyl state can be achieved by tuning the parameters of inductors and capacitors. A tight-binding-like model is derived to analyze the topological properties of the LC circuit lattice. The key characters of the topological states, such as the drumhead-like surface bands for nodal-line state and the Fermi-arc-like surface bands for Weyl state, are found in these systems. We also show that the Weyl points are stable with the fabrication errors of electric devices.Comment: 4 figure
    • …
    corecore