12 research outputs found

    Flexible shear stress sensor skin for aerodynamics applications

    Get PDF
    Packaging for a large distributed sensing system is a challenging topic. Using flexible skin technology solves many of these problems. Combining with the newly developed backside contact technique, sensor packaging is made even easier by completely avoiding the fragile bonding wires. This paper describes the improved flexible MEMS technology and its application to the fabrication and packaging of practical shear stress sensor skins. An airflow separation detection system including these skins, MOSIS bias circuits and a data acquisition unit has been successfully tested in windtunnel and is being used for the aerodynamic study of a MEMS controlled super-maneuverable low-altitude unmanned aerial vehicle (UAV)

    Flexible shear stress sensor skin for aerodynamics applications

    Get PDF
    Packaging for a large distributed sensing system is a challenging topic. Using flexible skin technology solves many of these problems. Combining with the newly developed backside contact technique, sensor packaging is made even easier by completely avoiding the fragile bonding wires. This paper describes the improved flexible MEMS technology and its application to the fabrication and packaging of practical shear stress sensor skins. An airflow separation detection system including these skins, MOSIS bias circuits and a data acquisition unit has been successfully tested in windtunnel and is being used for the aerodynamic study of a MEMS controlled super-maneuverable low-altitude unmanned aerial vehicle (UAV)

    The blue channel of the Keck low-resolution imaging spectrometer

    Get PDF
    This paper summarizes the optical, mechanical, electrical, and software design of LRIS-B, the blue channel of the Keck Low Resolution and Imaging Spectrograph. The LRIS-B project will shortly be completing the existing LRIS instrument through the addition of dichroic beamsplitters, grisms to disperse light on the blue channel, broad-band u, B, and V photometric filters, a blue and near-UV transmitting camera lens, and a large format blue-sensitive CCD detector. LRIS-B will also introduce piezoelectric xy-actuation of the CCD detector inside its Dewar, in order to compensate for flexure in the existing instrument; ultimately the red-side CCD detector will be similarly equipped, its PZT xy-stage being independently programmed. The optical design of the LRIS-B camera uses only fused silica and calcium fluoride elements, and includes a decentered meniscus element to compensate for coma introduced by the LRIS off-axis paraboloid collimator. The design of the blue channel grisms have been optimized for maximum blaze efficiency, the highest dispersion grism having a groove density of 1200 gr/mm. Optical elements not in use at any given time will be stowed in carousels externally mounted to the instrument sidewalls. The entire instrument is designed to permit remote operation

    The blue channel of the Keck low-resolution imaging spectrometer

    Get PDF
    This paper summarizes the optical, mechanical, electrical, and software design of LRIS-B, the blue channel of the Keck Low Resolution and Imaging Spectrograph. The LRIS-B project will shortly be completing the existing LRIS instrument through the addition of dichroic beamsplitters, grisms to disperse light on the blue channel, broad-band u, B, and V photometric filters, a blue and near-UV transmitting camera lens, and a large format blue-sensitive CCD detector. LRIS-B will also introduce piezoelectric xy-actuation of the CCD detector inside its Dewar, in order to compensate for flexure in the existing instrument; ultimately the red-side CCD detector will be similarly equipped, its PZT xy-stage being independently programmed. The optical design of the LRIS-B camera uses only fused silica and calcium fluoride elements, and includes a decentered meniscus element to compensate for coma introduced by the LRIS off-axis paraboloid collimator. The design of the blue channel grisms have been optimized for maximum blaze efficiency, the highest dispersion grism having a groove density of 1200 gr/mm. Optical elements not in use at any given time will be stowed in carousels externally mounted to the instrument sidewalls. The entire instrument is designed to permit remote operation
    corecore