18 research outputs found

    Efficient Mixed Transformer for Single Image Super-Resolution

    Full text link
    Recently, Transformer-based methods have achieved impressive results in single image super-resolution (SISR). However, the lack of locality mechanism and high complexity limit their application in the field of super-resolution (SR). To solve these problems, we propose a new method, Efficient Mixed Transformer (EMT) in this study. Specifically, we propose the Mixed Transformer Block (MTB), consisting of multiple consecutive transformer layers, in some of which the Pixel Mixer (PM) is used to replace the Self-Attention (SA). PM can enhance the local knowledge aggregation with pixel shifting operations. At the same time, no additional complexity is introduced as PM has no parameters and floating-point operations. Moreover, we employ striped window for SA (SWSA) to gain an efficient global dependency modelling by utilizing image anisotropy. Experimental results show that EMT outperforms the existing methods on benchmark dataset and achieved state-of-the-art performance. The Code is available at https://github. com/Fried-Rice-Lab/EMT.git.Comment: Super-resolution, Long-range attention, Transformer, Localit

    Image Super-Resolution using Efficient Striped Window Transformer

    Full text link
    Transformers have achieved remarkable results in single-image super-resolution (SR). However, the challenge of balancing model performance and complexity has hindered their application in lightweight SR (LSR). To tackle this challenge, we propose an efficient striped window transformer (ESWT). We revisit the normalization layer in the transformer and design a concise and efficient transformer structure to build the ESWT. Furthermore, we introduce a striped window mechanism to model long-term dependencies more efficiently. To fully exploit the potential of the ESWT, we propose a novel flexible window training strategy that can improve the performance of the ESWT without additional cost. Extensive experiments show that ESWT outperforms state-of-the-art LSR transformers, and achieves a better trade-off between model performance and complexity. The ESWT requires fewer parameters, incurs faster inference, smaller FLOPs, and less memory consumption, making it a promising solution for LSR.Comment: SOTA lightweight super-resolution transformer. 8 pages, 9 figures and 6 tables. The Code is available at https://github.com/Fried-Rice-Lab/FriedRiceLa

    Kernel principal component analysis and differential non-linear feature extraction of pesticide residues on fruit surface based on surface-enhanced Raman spectroscopy

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) has attracted much attention because of its high sensitivity, high speed, and simple sample processing, and has great potential for application in the field of pesticide residue detection. However, SERS is susceptible to the influence of a complex detection environment in the detection of pesticide residues on the surface of fruits, facing problems such as interference from the spectral peaks of detected impurities, unclear dimension of effective correlation data, and poor linearity of sensing signals. In this work, the enhanced raw data of the pesticide thiram residues on the fruit surface using gold nanoparticle (Au-NPs) solution are formed into the raw data set of Raman signal in the IoT environment of Raman spectroscopy principal component detection. Considering the non-linear characteristics of sensing data, this work adopts kernel principal component analysis (KPCA) including radial basis function (RBF) to extract the main features for the spectra in the ranges of 653∼683 cm−1, 705∼728 cm−1, and 847∼872 cm−1, and discusses the effects of different kernel function widths (σ) to construct a qualitative analysis of pesticide residues based on SERS spectral data model, so that the SERS spectral data produce more useful dimensionality reduction with minimal loss, higher mean squared error for cross-validation in non-linear scenarios, and effectively weaken the interference features of detecting impurity spectral peaks, unclear dimensionality of effective correlation data, and poor linearity of sensing signals, reflecting better extraction effects than conventional principal component analysis (PCA) models

    Detection of Pirimiphos-Methyl in Wheat Using Surface-Enhanced Raman Spectroscopy and Chemometric Methods

    No full text
    Pesticide residue detection is a hot issue in the quality and safety of agricultural grains. A novel method for accurate detection of pirimiphos-methyl residues in wheat was developed using surface-enhanced Raman spectroscopy (SERS) and chemometric methods. A simple pretreatment method was conducted to extract pirimiphos-methyl residue from wheat samples, and highly effective gold nanorods were prepared for SERS measurement. Raman peaks assignment was calculated using density functional theory. The Raman signal of pirimiphos-methyl can be detected when the concentrations of residue in wheat extraction solution and contaminated wheat is as low as 0.2 mg/L and 0.25 mg/L, respectively. Quantification of pirimiphos-methyl was performed by applying regression models developed by partial least squares regression, support vector machine regression and random forest with principal component analysis using different preprocessed methods. As for the contaminated wheat samples, the relative deviation between gas chromatography-mass spectrometry value and predicted value is in the range of 0.10%–6.63%, and predicted recovery is 94.12%–106.63%, ranging from 23.93 mg/L to 0.25 mg/L. Results demonstrated that the proposed SERS method is an effective and efficient analytical tool for detecting pirimiphos-methyl in wheat with high accuracy and excellent sensitivity

    Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration

    No full text
    The visible and near-infrared (Vis-NIR) reflectance spectroscopy was utilized for the rapid and nondestructive discrimination of edible oil adulteration. In total, 110 samples of sesame oil and rapeseed oil adulterated with soybean oil in different levels were produced to obtain the reflectance spectra of 350–2500 nm. A set of multivariant methods was applied to identify adulteration types and adulteration rates. In the qualitative analysis of adulteration type, the support vector machine (SVM) method yielded high overall accuracy with multiple spectra pretreatments. In the quantitative analysis of adulteration rate, the random forest (RF) combined with multivariate scattering correction (MSC) achieved the highest identification accuracy of adulteration rate with the full wavelengths of Vis-NIR spectra. The effective wavelengths of the Vis-NIR spectra were screened to improve the robustness of the multivariant methods. The analysis results suggested that the competitive adaptive reweighted sampling (CARS) was helpful for removing the redundant information from the spectral data and improving the prediction accuracy. The PLSR + MSC + CARS model achieved the best prediction performance in the two adulteration cases of sesame oil and rapeseed oil. The coefficient of determination (RPcv2) and the root mean square error (RMSEPcv) of the prediction set were 0.99656 and 0.01832 in sesame oil adulterated with soybean oil, and the RPcv2 and RMSEPcv were 0.99675 and 0.01685 in rapeseed oil adulterated with soybean oil, respectively. The Vis-NIR reflectance spectroscopy with the assistance of multivariant analysis can effectively discriminate the different adulteration rates of edible oils

    Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods

    No full text
    The composition and content of fatty acids are critical indicators to identify the quality of edible oils. This study was undertaken to establish a rapid determination method for quality detection of edible oils based on quantitative analysis of palmitic acid, stearic acid, arachidic acid, and behenic acid. Seven kinds of oils were measured to obtain Vis-NIR spectra. Multivariate methods combined with pretreatment methods were adopted to establish quantitative analysis models for the four fatty acids. The model of support vector machine (SVM) with standard normal variate (SNV) pretreatment showed the best predictive performance for the four fatty acids. For the palmitic acid, the determination coefficient of prediction (RP2) was 0.9504 and the root mean square error of prediction (RMSEP) was 0.8181. For the stearic acid, RP2 and RMSEP were 0.9636 and 0.2965. In the prediction of arachidic acid, RP2 and RMSEP were 0.9576 and 0.0577. In the prediction of behenic acid, the RP2 and RMSEP were 0.9521 and 0.1486. Furthermore, the effective wavelengths selected by successive projections algorithm (SPA) were useful for establishing simplified prediction models. The results demonstrate that Vis-NIR spectroscopy combined with multivariate methods can provide a rapid and accurate approach for fatty acids detection of edible oils

    Wireless Volatile Organic Compound Detection for Restricted Internet of Things Environments Based on Cataluminescence Sensors

    No full text
    Cataluminescence-based sensors do not require external light sources and complex circuitry, which enables them to avoid light scattering with high sensitivity, selectivity, and widely linear range. In this study, a wireless sensor system based on hierarchical CuO microspheres assembled from nano-sheets was constructed for Volatile Organic Compound (VOC) online detection. Through sensor characteristics and data process analysis, the results showed that the luminous sensor system has good luminous characteristics, including the intensity of visible light, high signal/noise (S/N) values, and very short response and recovery times. Different VOC concentration values can be detected on multiple wavelength channels and different Cataluminescence signal spectra separations can process multiple sets of Cataluminescence data combinations concurrently. This study also briefly studied the mechanism action of the Cataluminescence sensor, which can specifically be used for VOC detecting

    Wireless Volatile Organic Compound Detection for Restricted Internet of Things Environments Based on Cataluminescence Sensors

    No full text
    Cataluminescence-based sensors do not require external light sources and complex circuitry, which enables them to avoid light scattering with high sensitivity, selectivity, and widely linear range. In this study, a wireless sensor system based on hierarchical CuO microspheres assembled from nano-sheets was constructed for Volatile Organic Compound (VOC) online detection. Through sensor characteristics and data process analysis, the results showed that the luminous sensor system has good luminous characteristics, including the intensity of visible light, high signal/noise (S/N) values, and very short response and recovery times. Different VOC concentration values can be detected on multiple wavelength channels and different Cataluminescence signal spectra separations can process multiple sets of Cataluminescence data combinations concurrently. This study also briefly studied the mechanism action of the Cataluminescence sensor, which can specifically be used for VOC detecting

    Rapid Detection of Pesticide Residues in Paddy Water Using Surface-Enhanced Raman Spectroscopy

    No full text
    Pesticide residue in paddy water is one of the main factors affecting the quality and safety of rice, however, the negative effect of this residue can be effectively prevented and reduced through early detection. This study developed a rapid detection method for fonofos, phosmet, and sulfoxaflor in paddy water through chemometric methods and surface-enhanced Raman spectroscopy (SERS). Residue from paddy water samples was directly used for SERS measurement. The obtained spectra from the SERS can detect 0.5 mg/L fonofos, 0.25 mg/L phosmet, and 1 mg/L sulfoxaflor through the appearance of major characteristic peaks. Then, we used chemometric methods to develop models for the intelligent analysis of pesticides, alongside the SERS spectra. The classification models developed by K-nearest neighbor identified all of the samples, with an accuracy of 100%. For the quantitative analysis, the partial least squares regression models obtained the best predicted performance for fonofos and sulfoxaflor, and the support vector machine model provided optimal results, with a root-mean-square error of validation of 0.207 and a coefficient of determination of validation of 0.99952, for phosmet. Experiments for actual contaminated samples also showed that the above models predicted the pesticide residue values with high accuracy. Overall, using SERS with chemometric methods provided a simple and convenient approach for the detection of pesticide residues in paddy water

    Detection of Pirimiphos-Methyl in Wheat Using Surface-Enhanced Raman Spectroscopy and Chemometric Methods

    No full text
    Pesticide residue detection is a hot issue in the quality and safety of agricultural grains. A novel method for accurate detection of pirimiphos-methyl residues in wheat was developed using surface-enhanced Raman spectroscopy (SERS) and chemometric methods. A simple pretreatment method was conducted to extract pirimiphos-methyl residue from wheat samples, and highly effective gold nanorods were prepared for SERS measurement. Raman peaks assignment was calculated using density functional theory. The Raman signal of pirimiphos-methyl can be detected when the concentrations of residue in wheat extraction solution and contaminated wheat is as low as 0.2 mg/L and 0.25 mg/L, respectively. Quantification of pirimiphos-methyl was performed by applying regression models developed by partial least squares regression, support vector machine regression and random forest with principal component analysis using different preprocessed methods. As for the contaminated wheat samples, the relative deviation between gas chromatography-mass spectrometry value and predicted value is in the range of 0.10%−6.63%, and predicted recovery is 94.12%−106.63%, ranging from 23.93 mg/L to 0.25 mg/L. Results demonstrated that the proposed SERS method is an effective and efficient analytical tool for detecting pirimiphos-methyl in wheat with high accuracy and excellent sensitivity
    corecore