122 research outputs found

    A comparison of FreeSurfer-generated data with and without manual intervention

    Get PDF
    This paper examined whether FreeSurfer - generated data differed between a fully – automated, unedited pipeline and an edited pipeline that included the application of control points to correct errors in white matter segmentation. In a sample of 30 individuals, we compared the summary statistics of surface area, white matter volumes, and cortical thickness derived from edited and unedited datasets for the 34 regions of interest (ROIs) that FreeSurfer (FS) generates. To determine whether applying control points would alter the detection of significant differences between patient and typical groups, effect sizes between edited and unedited conditions in individuals with the genetic disorder, 22q11.2 deletion syndrome (22q11DS) were compared to neurotypical controls. Analyses were conducted with data that were generated from both a 1.5 tesla and a 3 tesla scanner. For 1.5 tesla data, mean area, volume, and thickness measures did not differ significantly between edited and unedited regions, with the exception of rostral anterior cingulate thickness, lateral orbitofrontal white matter, superior parietal white matter, and precentral gyral thickness. Results were similar for surface area and white matter volumes generated from the 3 tesla scanner. For cortical thickness measures however, seven edited ROI measures, primarily in frontal and temporal regions, differed significantly from their unedited counterparts, and three additional ROI measures approached significance. Mean effect sizes for edited ROIs did not differ from most unedited ROIs for either 1.5 or 3 tesla data. Taken together, these results suggest that although the application of control points may increase the validity of intensity normalization and, ultimately, segmentation, it may not affect the final, extracted metrics that FS generates. Potential exceptions to and limitations of these conclusions are discussed

    Velo-Cardio-Facial Syndrome

    Get PDF
    Purpose of review: Velo-cardio-facial syndrome has emerged from obscurity to become one of the most researched disorders this past decade. It is one of the most common genetic syndromes in humans, the most common contiguous gene syndrome in humans, the most common syndrome of cleft palate, and the most common syndrome of conotruncal heart malformations. Velo-cardio-facial syndrome has an expansive phenotype, a factor reflected in the wide range of studies that cover both clinical features and molecular genetics. In this review, we cover multiple areas of research during the past year, including psychiatric disorders, neuroimaging, and the delineation of clinical features. Recent findings: The identification of candidate genes for heart anomalies, mental illness, and other clinical phenotypes has been reported in the past year with a focus on TBX1 for cardiac and craniofacial phenotypes and COMT and PRODH for psychiatric disorders. The expansive phenotype of velo-cardio-facial syndrome continues to grow with new behavioral and structural anomalies reported. Treatment issues are beginning to draw attention, although most authors continue to focus on diagnostic issues. Summary: Its high population prevalence, estimated to be as common as 1:2000 has sparked a large amount of research, as has the model the syndrome serves for identifying the causes of mental illness and learning disabilities, but it is obvious that more information is needed. Intensive scrutiny of velo-cardio-facial syndrome will undoubtedly continue for many years to come with the hope that researchers will turn more of their attention to treatment and treatment outcomes

    Cognitive and Psychiatric Predictors to Psychosis in Velocardiofacial Syndrome: A 3-Year Follow-Up Study

    Get PDF
    Objective: To predict prodromal psychosis in adolescents with velocardiofacial syndrome (VCFS). Method: 70 youth with VCFS, 27 siblings of youth with VCFS and 25 community controls were followed from childhood (Mean age = 11.8 years) into mid-adolescence (mean age 15.0 years). Psychological tests measuring intelligence, academic achievement, learning/memory, attention and executive functioning as well as measures of parent and clinician ratings of child psychiatric functioning were completed at both time point. Results: Major depressive disorder, oppositional defiant disorder, and generalized anxiety disorder diagnoses increased in the VCFS sample. With very low false positive rates, the best predictor of adolescent prodromal psychotic symptoms was parent ratings of childhood odd/eccentric symptoms and child performance on a measure of executive functioning, the Wisconsin Card Sorting Test. Conclusions: Similar to the non-VCFS prodromal psychosis literature, a combination of cognitive and psychiatric variables appears to predict psychosis in adolescence. A child with VCFS who screens positive is noteworthy and demands clinical attention

    The Neural Correlates of Non-Spatial Working Memory in Velocardiofacial Syndrome (22q11.2 Deletion Syndrome)

    Get PDF
    Velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a neurogenetic disorder that is associated with both learning disabilities and a consistent neuropsychological phenotype, including deficits in executive function, visuospatial perception, and working memory. Anatomic imaging studies have identified significant volumetric reductions in the parietal lobe of individuals with VCFS, but several studies have reported that the frontal lobe is relatively preserved. We used functional magnetic resonance imaging to investigate the neural correlates of non-spatial working memory in 17 youths with VCFS, 10 of their unaffected siblings, and 10 community controls (with the same proportion of learning disabilities as the VCFS youths). Task performance of siblings tended to be more accurate than children with VCFS, who did not differ from community controls. All three-study groups recruited parietal regions that were equivalent in location and magnitude. Whereas the sibling group also recruited the dorsolateral prefrontal cortex (DLPFC), Broca\u27s area, and anterior cingulate, DLPFC activation was absent in the whole brain analyses of children with VCFS and controls. Moreover, the magnitude of frontal activation in VCFS participants was restricted relative to both siblings and controls. These findings suggest that VCFS participants exhibit frontal hypoactivation that is not attributable to performance. In addition, VCFS children and controls (many with idiopathic learning disabilities) appear to rely on phonological rehearsal to hold information on line instead of the DLPFC. Despite previous anatomic MRI reports of preserved frontal lobe volumes in VCFS therefore, these fMRI findings suggest that the frontal component of the distributed network subserving executive function and working memory may be disrupted in youth with this disorder

    22q11.2 Deletion Syndrome: Are Motor Deficits More Than Expected for IQ Level?

    Get PDF
    To examine motor function in children with 22q11.2 deletion syndrome (22q11.2) and a Full Scale IQ (FSIQ) comparable control group. This study was part of a prospective study of neuropsychological function in children 9 to 15 years of age with 22q11.2 and community control subjects and included children from these two populations with comparable FSIQs. Verbal IQs on the WISC-R for 40 children with 22q11.2 (88.4) and 24 community control subjects (87.2) were not different (P=.563). However, the performance IQs were (22q11.2; 81.1 vs community controls; 89.3;

    The Longitudinal Course of Attention Deficit/Hyperactivity Disorder in Velo-Cardio-Facial Syndrome

    Get PDF
    OBJECTIVE: To evaluate predictors of persistence of attention deficit/hyperactivity disorder (ADHD) in a large sample of children with velo-cardio-facial syndrome (VCFS) with and without ADHD followed prospectively into adolescence. STUDY DESIGN: Children with VCFS with (n = 37) and without (n = 35) ADHD who were on average 11 years old at the baseline assessment and 15 years old at the follow-up assessment were comprehensively assessed with structured diagnostic interviews and assessments of behavioral, cognitive, social, school, and family functioning. Control participants both with and without ADHD were also followed prospectively. RESULTS: In adolescence, 65% of children with VCFS continued to have findings consistent with ADHD. Childhood predictors of persistence were higher rates of familial ADHD, having childhood depression, having higher levels of hyperactivity, and a larger number of intrusion errors on a verbal list learning test at baseline. Approximately 15% of children with VCFS who did not have ADHD at Time 1 met diagnostic criteria for ADHD at Time 2. All of these children had subthreshold ADHD symptoms at Time 1. CONCLUSIONS: These findings prospectively confirm that persistence of ADHD into adolescence in VCFS is predicted by childhood variables that have been previously documented in the non-VCFS ADHD literature

    Cortical Gyrification in Velo-Cardio-Facial (22q11.2 Deletion) Syndrome: A Longitudinal Study

    Get PDF
    Introduction: Velo-cardio-facial syndrome (VCFS) has been identified as an important risk factor for psychoses, with up to 32% of individuals with VCFS developing a psychotic illness. Individuals with VCFS thus form a unique group to identify and explore early symptoms and biological correlates of psychosis. In this study, we examined if cortical gyrification pattern, i.e. gyrification index (GI) can be a potential neurobiological marker for psychosis. Method: GIs of 91 individuals with VCFS were compared with 29 siblings and 54 controls. Further, 58 participants with VCFS, 21 siblings and 18 normal controls were followed up after 3 years and longitudinal changes in GI were compared. Additionally, we also correlated longitudinal changes in GI in individuals with VCFS with prodromal symptoms of psychosis on the Scale of Prodromal Symptoms (SOPS). Result: Individuals with VCFS had significantly lower GIs as compared to their siblings and normal controls. Longitudinal examination of GI did not reveal any significant group–time interactions between the three groups. Further, longitudinal change in GI scores in the VCFS group was negatively correlated with positive prodromal symptoms, with the left occipital region reaching statistical significance. Conclusion: The study confirms previous reports that individuals with VCFS have reduced cortical folding as compared to normal controls. However over a period of three years, there is no difference in the rate of change of GI among both individuals with VCFS and normal controls. Finally, our results suggest that neuroanatomical alterations in areas underlying visual processing may be an early marker for psychosis

    Manic Symptoms and Behavioral Dysregulation in Youth with Velocardiofacial Syndrome (22q11.2 Deletion Syndrome).

    Get PDF
    Mania and bipolar disorder have been reported in adolescents and adults with velocardiofacial syndrome (VCFS; also known as 22q11.2 deletion syndrome). Children with VCFS have a high prevalence of attention-deficit/hyperactivity disorder (ADHD), which may constitute a risk factor for the eventual development of bipolar disorder in this population. Therefore, we sought to determine whether children with VCFS exhibit more manic symptoms than community controls that also may have learning disorders and ADHD. The study population consisted of 86 children with VCFS and 36 community controls from ages 9 to 15 years, using measures of Young Mania Rating Scale-Parent Version, Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL), Child Behavior Checklist (CBCL), and Wechsler Intelligence Scale for Children-3rd edition (WISC-III). The results indicate that manic symptoms were not more prevalent in VCFS than in a community sample of children with learning disorders and ADHD. However, after accounting for symptoms of depression and ADHD, we found that manic symptoms in VCFS predicted uniquely to scores on four Child Behavior Checklist (CBCL) subscales, including anxiety, somatization, thought, and conduct problems. In contrast, manic symptoms in controls predicted uniquely to conduct problems only. Accordingly, our findings of severe behavioral impairment in youth with VCFS and manic symptoms suggest that these children may warrant more intensive monitoring and treatment relative to youth with VCFS and ADHD only

    A Gender-Moderated Effect of a Functional COMT Polymorphism on Prefrontal Brain Morphology and Function in Velo-Cardio-Facial Syndrome (22q11.2 Deletion Syndrome)

    Get PDF
    Caused by a microdeletion at the q11.2 locus of chromosome 22, velo-cardio-facial syndrome (also known as VCFS, 22q11 deletion syndrome, DiGeorge sequence, and conotruncal anomalies face syndrome) is associated with a distinctive physical, neurocognitive, and psychiatric phenotype. Increasing interest has centered on identifying the candidate genes within the deleted region that may contribute to this phenotype. One attractive candidate gene is catechol-O-methyltransferase (COMT) because it encodes for a protein that degrades dopamine. Variability in COMT activity is related to a Val158Met polymorphism that has been implicated in prefrontal lobe cognitive and neuropsychiatric function. We examined the effect of this polymorphism on prefrontal anatomy and frontally-mediated neuropsychological function in 58 children with VCFS, 26 who were hemizygous for the Met allele and 32 for the Val allele. We found an allele by gender interaction effect on the volumes of the dorsal prefrontal and orbital prefrontal cortices. We did not find significant allele or gender by allele effects on neuropsychological tasks, although girls with the Met allele tended to perform better on the Wisconsin card sorting task. These data suggest that this functional COMT polymorphism may play a gender-moderated role in determining the neuroanatomic phenotype of individuals with VCFS. Longitudinal evaluation of these children is essential in order to identify potential clinical implications of this allele by gender interaction

    Mapping Cortical Morphology in Youth With Velocardiofacial (22q11.2 Deletion) Syndrome

    Get PDF
    Objective: Velo-cardio-facial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to thirty percent of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method: Using a longitudinal, case-control design, we acquired anatomic magnetic resonance images to investigate both cross-sectional and longitudinal alterations in surface cortical morphology in a cohort of adolescents with VCFS and age-matched typical controls. All participants were scanned at two time points. Results: Relative to controls, youth with VCFS exhibited alterations in inferior frontal, dorsal frontal, occipital, and cerebellar brain regions at both time points. We observed little change over time in surface morphology of either study group. However, within the VCFS group only, worsening psychosocial functioning over time was associated with Time 2 surface contractions in left middle and inferior temporal gyri. Further, prodromal symptoms at Time 2 were associated with surface contractions in left and right orbitofrontal, temporal and cerebellar regions, as well as surface protrusions of supramarginal gyrus. Conclusions: These findings advance our understanding of cortical disturbances in VCFS that produce vulnerability for psychosis in this high risk population
    corecore