41 research outputs found

    Diurnal patterns of soluble amyloid precursor protein metabolites in the human central nervous system

    Get PDF
    The amyloid-β (Aβ) protein is diurnally regulated in both the cerebrospinal fluid and blood in healthy adults; circadian amplitudes decrease with aging and the presence of cerebral Aβ deposits. The cause of the Aβ diurnal pattern is poorly understood. One hypothesis is that the Amyloid Precursor Protein (APP) is diurnally regulated, leading to APP product diurnal patterns. APP in the central nervous system is processed either via the β-pathway (amyloidogenic), generating soluble APP-β (sAPPβ) and Aβ, or the α-pathway (non-amyloidogenic), releasing soluble APP-α (sAPPα). To elucidate the potential contributions of APP to the Aβ diurnal pattern and the balance of the α- and β- pathways in APP processing, we measured APP proteolytic products over 36 hours in human cerebrospinal fluid from cognitively normal and Alzheimer's disease participants. We found diurnal patterns in sAPPα, sAPPβ, Aβ40, and Aβ42, which diminish with increased age, that support the hypothesis that APP is diurnally regulated in the human central nervous system and thus results in Aβ diurnal patterns. We also found that the four APP metabolites were positively correlated in all participants without cerebral Aβ deposits. This positive correlation suggests that the α- and β- APP pathways are non-competitive under normal physiologic conditions where APP availability may be the limiting factor that determines sAPPα and sAPPβ production. However, in participants with cerebral Aβ deposits, there was no correlation of Aβ to sAPP metabolites, suggesting that normal physiologic regulation of cerebrospinal fluid Aβ is impaired in the presence of amyloidosis. Lastly, we found that the ratio of sAPPβ to sAPPα was significantly higher in participants with cerebral Aβ deposits versus those without deposits. Therefore, the sAPPβ to sAPPα ratio may be a useful biomarker for cerebral amyloidosis

    A single dose of the γ-secretase inhibitor semagacestat alters the cerebrospinal fluid peptidome in humans

    Get PDF
    Abstract Background In Alzheimer’s disease, beta-amyloid peptides in the brain aggregate into toxic oligomers and plaques, a process which is associated with neuronal degeneration, memory loss, and cognitive decline. One therapeutic strategy is to decrease the production of potentially toxic beta-amyloid species by the use of inhibitors or modulators of the enzymes that produce beta-amyloid from amyloid precursor protein (APP). The failures of several such drug candidates by lack of effect or undesired side-effects underscore the importance to monitor the drug effects in the brain on a molecular level. Here we evaluate if peptidomic analysis in cerebrospinal fluid (CSF) can be used for this purpose. Methods Fifteen human healthy volunteers, divided into three groups, received a single dose of placebo or either 140 mg or 280 mg of the γ-secretase inhibitor semagacestat (LY450139). Endogenous peptides in CSF, sampled prior to administration of the drug and at six subsequent time points, were analyzed by liquid chromatography coupled to mass spectrometry, using isobaric labeling based on the tandem mass tag approach for relative quantification. Results Out of 302 reproducibly detected peptides, 11 were affected by the treatment. Among these, one was derived from APP and one from amyloid precursor-like protein 1. Nine peptides were derived from proteins that may not be γ-secretase substrates per se, but that are regulated in a γ-secretase-dependent manner. Conclusions These results indicate that a CSF peptidomic approach may be a valuable tool both to verify target engagement and to identify other pharmacodynamic effects of the drug. Data are available via ProteomeXchange with identifier PXD003075. Trial registration NCT00765115, registered 30/09/2008. </jats:sec

    Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network

    Get PDF
    BACKGROUND: Mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) cause autosomal dominant forms of Alzheimer disease (ADAD). More than 280 pathogenic mutations have been reported in APP, PSEN1, and PSEN2. However, understanding of the basic biological mechanisms that drive the disease are limited. The Dominantly Inherited Alzheimer Network (DIAN) is an international observational study of APP, PSEN1, and PSEN2 mutation carriers with the goal of determining the sequence of changes in presymptomatic mutation carriers who are destined to develop Alzheimer disease. RESULTS: We generated a library of 98 dermal fibroblast lines from 42 ADAD families enrolled in DIAN. We have reprogrammed a subset of the DIAN fibroblast lines into patient-specific induced pluripotent stem cell (iPSC) lines. These cells were thoroughly characterized for pluripotency markers. CONCLUSIONS: This library represents a comprehensive resource that can be used for disease modeling and the development of novel therapeutics

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    In Vivo Human Apolipoprotein E Isoform Fractional Turnover Rates in the CNS

    Get PDF
    Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer’s disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer’s disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis

    Comparison of Cosinor Parameters for sAPPβ among 3 groups.

    Full text link
    <p>Abbreviations: <b>YNC</b>: participants classified as young (cognitively) normal healthy controls; <b>Amyloid−</b>: participants with a Mean Cortical Binding Potential (MCBP) less than 0.18, or, in the absence of MCBP measurements, a mean CSF Aβ<sub>42</sub> concentration greater than 350 pg/mL; <b>Amyloid+</b>: participants with MCBP greater than or equal to 0.18, or, in the absence of MCBP measurements, a mean CSF Aβ<sub>42</sub> concentration less than 350 pg/mL.</p

    Separating participant groups by the sAPPβ/sAPPα ratio.

    Full text link
    <p>We compared sAPPβ and sAPPα concentrations, as well as the sAPPβ/sAPPα ratio, among groups using the first CSF collection. Each participant's first CSF sample was drawn between 7:30 A.M. and 9:00A.M. sAPPβ and sAPPα concentrations were measured using two separate metabolite-specific ELISAs. Student's <i>t</i>-tests were used and graphs show 95% Confidence Interval error bars. <b>A</b>) sAPPβ/sAPPα ratio was higher with amyloid deposition (Amyloid<b>+</b>) as compared to healthy, older controls (Amyloid<b>−</b>) (*<i>p</i> = 0.02) or young healthy controls (YNC) (**<i>p</i> = 0.002). No significant difference was detected between the ratio of the YNC and Amyloid<b>−</b> groups (<i>p</i> = 0.6). <b>B</b>) sAPPα concentrations were not significantly higher in Amyloid<b>+</b> than in YNC (<i>p</i> = 1.0) or Amyloid<b>−</b> (<i>p</i> = 0.5). No significant difference was detected between the sAPPα concentration of the YNC and Amyloid<b>−</b> groups (<i>p</i> = 0.4). <b>C</b>) sAPPβ concentrations were not significantly higher in Amyloid<b>+</b> than in YNC (<i>p</i> = 0.09) nor Amyloid<b>−</b> (<i>p</i> = 0.6). No significant difference was detected between sAPPβ concentrations from the YNC and Amyloid<b>−</b> groups (<i>p</i> = 0.3).</p
    corecore