3 research outputs found

    5-HT1A Receptor Function Makes Wound Healing a Happier Process

    Get PDF
    Skin wound healing is a multistage phenomenon that is regulated by cell–cell interplay and various factors. Endogenous serotonin is an important neurotransmitter and cytokine. Its interaction with the serotonin 1A receptor (5-HTR1A) delivers downstream cellular effects. The role of serotonin (5-hydroxytryptamine, 5-HT) and the 5-HT1A receptor has been established in the regeneration of tissues such as the liver and spinal motor neurons, prompting the investigation of the role of 5-HT1A receptor in skin healing. This study assessed the role of 5-HT1A receptor in excisional wound healing by employing an excisional punch biopsy model on 5-Ht1a receptor knockout mice. Post-harvest analysis revealed 5-Ht1a receptor knockout mice showed impaired skin healing, accompanied by a greater number of F4/80 macrophages, which prolongs the inflammatory phase of wound healing. To further unravel this phenomenon, we employed the 5-HT1A receptor agonist [(R)-(+)-8-Hydroxy-DPAT hydrobromide] as a topical cream treatment in an excisional punch biopsy model. The 5-HT1A receptor agonist treated group showed a smaller wound area, scar size, and improved neovascularization, which contributed to improve healing outcomes as compared to the control. Collectively, these findings revealed that serotonin and 5-HT1A receptor play an important role during the healing process. These findings may open new lines of investigation for the potential treatment alternatives to improve skin healing with minimal scarring

    Platelets Increase the Expression of PD-L1 in Ovarian Cancer

    No full text
    The interactions between platelets and cancer cells activate platelets and enhance tumor growth. Platelets increase proliferation and epithelial–mesenchymal transition in cancer cells, inhibit anoikis, enhance the extravasation of cancer cells, and protect circulating tumor cells against natural killer cells. Here, we have identified another mechanism by which platelets dampen the immune attack on cancer cells. We found that platelets can blunt the antitumor immune response by increasing the expression of inhibitory immune checkpoint (PD-L1) on ovarian cancer cells in vitro and in vivo. Platelets increased PD-L1 in cancer cells via contact-dependent (through NF-κB signaling) and contact-independent (through TFGβR1/Smad signaling) pathways. Inhibition of NF-κB or TGFβR1 signaling in ovarian cancer cells abrogated platelet-induced PD-L1 expression. Reducing platelet counts or inhibiting platelet functions reduced the expression of PD-L1 in ovarian cancer. On the other hand, an increase in platelet counts increased the expression of PD-L1 in tumor-bearing mice
    corecore