543 research outputs found

    A Novel Probabilistic Model Based Fingerprint Recognition Algorithm

    Get PDF
    AbstractA novel fingerprint recognition algorithm based on the probabilistic graphical model is proposed in this paper. First, minutiae in query fingerprint are viewed as random variables with the minutiae in template print as the realizations. According to the random variables, a 2-tree model is built by selecting two signal points from the query set. Second, the model is converted into a Junction Tree, and the potentials of the tree nodes are defined according to the intrinsic characters of fingerprint. After that, Junction Tree (J.T.) algorithm is performed to obtain the correspondence of the two sets of minutiae. To deal with many-to-one corresponding problem caused by the outliers, we repeat the process by exchanging two sets. Finally, the similarity of the two fingerprints is evaluated using the number of common matching pairs and the maximal posteriori probability generated by the J.T. algorithm. Experiments performed on databases of FVC2004 achieve the perfect performance

    MiR-20a regulates the PRKG1 gene by targeting its coding region in pulmonary arterial smooth muscle cells

    Get PDF
    AbstractChronic hypoxia triggers pulmonary vascular remodeling, which is associated with de-differentiation of pulmonary artery smooth muscle cells (PASMC). Here, we show that miR-20a expression is up-regulated in response to hypoxia in both mouse and human PASMC. We also observed that miR-20a represses the protein kinase, cGMP-dependent, type I (PRKG1) gene and we identified two crucial miR-20a binding sites within the coding region of PRKG1. Functional studies showed that miR-20a promotes the proliferation and migration of human PASMC, whereas it inhibits their differentiation. In summary, we provided a possible mechanism by which hypoxia results in decreased PRKG1 expression and in the phenotypic switching of PASMC

    Endothelial glycocalyx injury is involved in heatstroke-associated coagulopathy and protected by N-acetylcysteine

    Get PDF
    IntroductionDamage to endothelial glycocalyx (EGCX) can lead to coagulation disorders in sepsis. Heat stroke (HS) resembles sepsis in many aspects; however, it is unclear whether EGCX injury is involved in its pathophysiology. The purpose of this study was to examine the relationship between the damage of EGCX and the development of coagulation disorders during HS.MethodsWe retrospectively collected 159 HS patients and analyzed coagulation characteristics and prognosis of HS patients with or without disseminated intravascular coagulation (DIC). We also replicated a rat HS model and measured coagulation indexes, pulmonary capillary EGCX injury in HS rats. Finally, we evaluated the effect of the antioxidant N-acetylcysteine (NAC) on HS-initiated EGCX injury and coagulation disorders.ResultsClinical data showed that HS patients complicated with DIC had a higher risk of death than HS patients without DIC. In a rat HS model, we found that rats subjected to heat stress developed hypercoagulability and platelet activation at the core body temperature of 43°C, just before the onset of HS. At 24 h of HS, the rats showed a consumptive hypo-coagulation state. The pulmonary capillary EGCX started to shed at 0 h of HS and became more severe at 24 h of HS. Importantly, pretreatment with NAC substantially alleviated EGCX damage and reversed the hypo-coagulation state in HS rats. Mechanically, HS initiated reactive oxidative species (ROS) generation, while ROS could directly cause EGCX damage. Critically, NAC protected against EGCX injury by attenuating ROS production in heat-stressed or hydrogen peroxide (H2O2)-stimulated endothelial cells.DiscussionOur results indicate that the poor prognosis of HS patients correlates with severe coagulation disorders, coagulation abnormalities in HS rats are associated with the damage of EGCX, and NAC improves HS-induced coagulopathy, probably through its protection against EGCX injury by preventing ROS generation
    corecore