34 research outputs found
Keggin-type P-W-Mo-V polyoxometalates in electrocatalyzed CO2 reduction using indium electrodes
Electrochemical CO2 reduction reaction (CO2RR) driven by indium-based catalysts can convert CO2 into C1 products with specific energy densities and relatively low mass. However, it is promising to obtain C2 products by introducing Keggin-type polyoxometalates (POMs) that can effectively regulate the proton-coupled electron transfer at the electrode–electrolyte interface. Here, the commercial indium sheets were combined with Keggin-type POMs (H4PVMoW10O40·15H2O, PVMoW10; H5PV2MoW9O40·10H2O, PV2MoW9) to process CO2RR. The highest Faradaic efficiency (FE) toward acetate reached 75.6% in the PVMoW10 system, and the highest FEethanol reached 85.1% in the PV2MoW9 system. The X-ray photoelectron spectroscopy (XPS) results indicated that the electron transfer by the POMs had a positive interaction with the active In0 sites, which provided a special electron channel to improve the FEs of the C2 products in CO2RR
Theoretical realization of tunable hollow beams using a periodical ring structure with a complex phase
Hollow beam is a peculiar structure beam, which has been widely used in various areas. Here, we propose a novel diffraction optical element to generate tunable hollow beams. This element is composed of periodic concentric rings. The phase of each ring is periodically distributed between −π and π and satisfies a complex variable function. By tuning the parameters of the structure, we can flexibly manipulate the size and length of the hollow beam. The length of the beam can be increased from 98 λ to 248 λ, and the full width at half maximum varies from 0.43 λ to 0.61 λ. Moreover, the light intensity and side lobe of the hollow beam can also be regulated using the designed diffraction optical element. The potential applications of this highly tunable hollow beam include optical nanomanipulation, microscopic imaging, and nanolithography
The role of off-board EV battery chargers in smart homes and smart grids: operation with renewables and energy storage systems
Concerns about climate changes and environmental air pollution are leading to the adoption of new technologies for transportation, mainly based on vehicle electrification and the interaction with smart grids, and also with the introduction of renewable energy sources (RES) accompanied by energy storage systems (ESS). For these three fundamental pillars, new power electronics technologies are emerging to transform the electrical power grid, targeting a flexible and collaborative operation. As a distinctive factor, the vehicle electrification has stimulated the presence of new technologies in terms of power management, both for smart homes and smart grids. As the title indicates, this book chapter focuses on the role of off-board EV battery chargers in terms of operation modes and contextualization for smart homes and smart grids in terms of opportunities. Based on a review of on-board and off-board EV battery charging systems (EV-BCS), this chapter focus on the off-board EV-BCS framed with RES and ESS as a dominant system in future smart homes. Contextualizing these aspects, three distinct cases are considered: (1) An ac smart home using separate power converters, according to the considered technologies; (2) A hybrid ac and dc smart home with an off-board EV-BCS interfacing RES and ESS, and with the electrical appliances plugged-in to the ac power grid; (3) A dc smart home using a unified
2
off-board EV-BCS with a single interface for the electrical power grid, and with multiple dc interfaces (RES, ESS, and electrical appliances). The results for each case are obtained in terms of efficiency and power quality, demonstrating that the off-board EV-BCS, as a unified structure for smart homes, presents better results. Besides, the off-board EV-BCS can also be used as an important asset for the smart grid, even when the EV is not plugged-in at the smart home.(undefined
Long non-coding RNA HULC exerts oncogenic activity on papillary thyroid cancer in vitro and in vivo
AbstractThyroid cancer is a frequently happened malignancy in human endocrine system. Papillary thyroid cancer (PTC) presents 70–80% of all thyroid cancer cases. Herein, we probed the possible oncogenic function of long non-coding RNA (lncRNA) highly up-regulated in liver cancer (HULC) in PTC. First, the HULC and microRNA-106a (miR-106a) expressions in PTC tissues and cells were tested. Plasmids or miRNAs transfections were done for altering HULC and miR-106a expressions. Then, cells viability and apoptosis, along with cell proliferative, migratory and invasive abilities, were tested, respectively. The PI3K/AKT and Wnt/β-catenin pathways activities were measured. Finally, the animal model of PTC was constructed and the tumour volumes and weights were gauged. We discovered that HULC and miR-106a had relative high expression levels in PTC tissues and cells. HULC overexpression enhanced TPC-1 cells viability and cell proliferative, migratory and invasive abilities. Silencing HULC induced TPC-1 cell apoptosis. miR-106a engaged in the oncogenic impacts of HULC. Moreover, HULC overexpression boosted PI3K/AKT and Wnt/β-catenin pathways activities via raising miR-106a expression. Besides, HULC overexpression enhanced the volumes and weights of PTC tumours. To sum up, HULC exhibited oncogenic function on PTC in vitro and in vivo
PI-3 kinase p110 β : a therapeutic target in advanced prostate cancers
Abstract: Prostate cancers in the castration-resistant stage are life-threatening because they are not curable in clinic. The novel androgen receptor inhibitor Xandi (Enzalutamide) and the new CYP17 inhibitor Zytiga (Abiraterone) prolonged patient survival only a few months in advanced prostate cancers. Therefore, novel therapeutic agents for advanced prostate cancers are urgently needed. PI-3 kinases are major intracellular signaling molecules that regulate multiple signal pathways related to cellular metabolism, cytokinesis, growth and survival. Accumulating evidence in the literature indicates that some isoforms of this kinase family are oncogenic and abnormally expressed in various human cancers, including prostate cancers. Recent extensive studies from our group and others showed that PI-3 kinase p110β is aberrantly overexpressed in advanced prostate cancers and is critical for prostate cancer development and progression as demonstrated in cell-based and animal models. Importantly, novel p110β-specific inhibitors have been developed and are currently been testing in clinical trials. In this article, we will briefly summarize recent developments in this regard
A novel reliability assessment method for distribution networks based on linear programming considering distribution automation and distributed generation
Abstract The primary methods of assessing the reliability of distribution networks comprise analytic and simulation methods. However, both approaches require the identification and computation of network topology, which precludes their expression in explicit, continuous functions, consequently impeding the incorporation of reliability constraints into planning and operational optimization models. To tackle this restriction, the present work puts forth a novel linear‐programming‐based reliability assessment method that is mathematically formulated, considering distribution automation (DA) and distributed generations (DGs), consisting of both conventional and renewable energy sources. In this paper, the clustering method and the scenario‐based method are used to model DGs. Next, a mixed integer linear programming (MILP) model, considering the DA and DGs with the System Average Interruption Duration Index (SAIDI) as the optimization objective, is proposed. Finally, the feasibility and effectiveness of the proposed method are verified in a 37‐node distribution network system
Bilateral chylothorax after left neck lymphadenectomy for thyroid cancer: A case report
Introduction: Chylothorax is caused by lymphatic chyle fluid leaking back through the thoracic duct and accumulating in the pleural cavity. It is related to a thoracic duct injury or occlusion. It is rare to have bilateral chylothorax after cervical lymph node dissection for thyroid cancer diagnosis. Case report: A 28-year-old woman was admitted to our hospital with bilateral hypoechoic thyroid nodules and cervical lymph node abnormalities. She underwent thyroidectomy and lymphadenectomy but developed chylothorax 3 days after surgery. She was treated with bilateral thoracic drainage, electrolyte supplementation, and somatostatin, and was discharged 17 days post-treatment. Conclusion: Bilateral chylothorax is a rare complication of thyroid cancer surgery. Early diagnosis and treatment, especially the detection of dyspnea, are key. Also, unobstructed bilateral thoracic drainage, improved surgical skills, and reduced thoracic duct injuries can help reduce complications
Symbiont shuffling dynamics associated with photodamage during temperature stress in coral symbiosis
Reef-building corals usually form a symbiotic relationship with various photosynthetic dinoflagellates, which may determine the physiology and stress tolerance of their hosts. The mechanisms governing symbiont dynamics are still poorly understood, but may be driven by temperature. Therefore, we performed indoor experiments to examine the photochemical efficiency and symbiont dynamics in the coral Pocillopora damicornis with thermo-sensitive Cladocopium (PdC) or thermo-tolerant Durusdinium (PdD) under 6-day temperature stress and after 90-day post-stress recovery. Regardless of the symbiont type, photochemical damage was induced by both heat and cold stress. We observed PdC with greater photodamage had a faster increase in the proportion of Durusdinium when exposed to heat or cold stress, whereas an inverse shuffling to Cladocopium in both PdC and PdD after the recovery period. This is the first record of symbiont shuffling from the originally dominant Durusdinium to Cladocopium in adult corals under laboratory conditions and the degree of symbiont shuffling was highly correlated with the photodamage. Overall, our findings suggest that symbiont shuffling can act as a critical mechanism allowing corals to rapidly adjust to environmental changes, which has implications for the capacity of corals to prevail in oceans with greater temperature fluctuations in the future