65 research outputs found

    The Influence of Major Satisfaction on Learning Engagement of Agriculture-Related Vocational Colleges in China: Taking Learning Motivation as a Mediating Variable

    Get PDF
    This study explores the intermediary structure model of agriculture-related vocational college students. Learning motivation is the mediating effect between major satisfaction and learning engagement. The objects of this study were 630 college students majoring in agriculture in SX city higher vocational colleges, Zhejiang Province. Three scale tools, namely, major satisfaction, learning engagement and learning motivation, were used to investigate the subjects. Likert five-point scale was used for scoring. The measurement model and structural model were constructed by structural equation model. The results show that major satisfaction has a positive effect on learning engagement. Learning motivation is a complete mediator between major satisfaction and learning engagement. The results show that the higher degree of major satisfaction has a good influence on learning engagement, but the strong learning motivation is more beneficial to learning engagement. Therefore, the school should not only improve students’ satisfaction with their major, but also stimulate students’ learning motivation in learning engagement

    Multi-Interval Rolling-Window Joint Dispatch and Pricing of Energy and Reserve under Uncertainty

    Full text link
    In this paper, the intra-day multi-interval rolling-window joint dispatch and pricing of energy and reserve is studied under increasing volatile and uncertain renewable generations. A look-ahead energy-reserve co-optimization model is proposed for the rolling-window dispatch, where possible contingencies and load/renewable forecast errors over the look-ahead window are modeled as several scenario trajectories, while generation, especially its ramp, is jointly scheduled with reserve to minimize the expected system cost considering these scenarios. Based on the proposed model, marginal prices of energy and reserve are derived, which incorporate shadow prices of generators' individual ramping capability limits to eliminate their possible ramping-induced opportunity costs or arbitrages. We prove that under mild conditions, the proposed market design provides dispatch-following incentives to generators without the need for out-of-the-market uplifts, and truthful-bidding incentives of price-taking generators can be guaranteed as well. Some discussions are also made on how to fit the proposed framework into current market practice. These findings are validated in numerical simulations

    Distributed Robust Bilinear State Estimation for Power Systems with Nonlinear Measurements

    Get PDF
    This paper proposes a fully distributed robust bilinear state-estimation (D-RBSE) method that is applicable to multi-area power systems with nonlinear measurements. We extend the recently introduced bilinear formulation of state estimation problems to a robust model. A distributed bilinear state-estimation procedure is developed. In both linear stages, the state estimation problem in each area is solved locally, with minimal data exchange with its neighbors. The intermediate nonlinear transformation can be performed by all areas in parallel without any need of inter-regional communication. This algorithm does not require a central coordinator and can compress bad measurements by introducing a robust state estimation model. Numerical tests on IEEE 14-bus, 118-bus benchmark systems, and a 1062-bus system demonstrate the validity of the method

    Hybrid-space reconstruction with add-on distortion correction for simultaneous multi-slab diffusion MRI

    Full text link
    Purpose: This study aims to propose a model-based reconstruction algorithm for simultaneous multi-slab diffusion MRI acquired with blipped-CAIPI gradients (blipped-SMSlab), which can also incorporate distortion correction. Methods: We formulate blipped-SMSlab in a 4D k-space with kz gradients for the intra-slab slice encoding and km (blipped-CAIPI) gradients for the inter-slab encoding. Because kz and km gradients share the same physical axis, the blipped-CAIPI gradients introduce phase interference in the z-km domain while motion induces phase variations in the kz-m domain. Thus, our previous k-space-based reconstruction would need multiple steps to transform data back and forth between k-space and image space for phase correction. Here we propose a model-based hybrid-space reconstruction algorithm to correct the phase errors simultaneously. Moreover, the proposed algorithm is combined with distortion correction, and jointly reconstructs data acquired with the blip-up/down acquisition to reduce the g-factor penalty. Results: The blipped-CAIPI-induced phase interference is corrected by the hybrid-space reconstruction. Blipped-CAIPI can reduce the g-factor penalty compared to the non-blipped acquisition in the basic reconstruction. Additionally, the joint reconstruction simultaneously corrects the image distortions and improves the 1/g-factors by around 50%. Furthermore, through the joint reconstruction, SMSlab acquisitions without the blipped-CAIPI gradients also show comparable correction performance with blipped-SMSlab. Conclusion: The proposed model-based hybrid-space reconstruction can reconstruct blipped-SMSlab diffusion MRI successfully. Its extension to a joint reconstruction of the blip-up/down acquisition can correct EPI distortions and further reduce the g-factor penalty compared with the separate reconstruction.Comment: 10 figures+tables, 8 supplementary figure

    Sampling strategies and integrated reconstruction for reducing distortion and boundary slice aliasing in high-resolution 3D diffusion MRI

    Get PDF
    Purpose: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. Methods: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz-oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. Results: We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. Conclusion: The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI
    corecore