1,244 research outputs found

    A Byzantine Fault Tolerant Distributed Commit Protocol

    Full text link
    In this paper, we present a Byzantine fault tolerant distributed commit protocol for transactions running over untrusted networks. The traditional two-phase commit protocol is enhanced by replicating the coordinator and by running a Byzantine agreement algorithm among the coordinator replicas. Our protocol can tolerate Byzantine faults at the coordinator replicas and a subset of malicious faults at the participants. A decision certificate, which includes a set of registration records and a set of votes from participants, is used to facilitate the coordinator replicas to reach a Byzantine agreement on the outcome of each transaction. The certificate also limits the ways a faulty replica can use towards non-atomic termination of transactions, or semantically incorrect transaction outcomes.Comment: To appear in the proceedings of the 3rd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 200

    Byzantine Fault Tolerance for Nondeterministic Applications

    Full text link
    All practical applications contain some degree of nondeterminism. When such applications are replicated to achieve Byzantine fault tolerance (BFT), their nondeterministic operations must be controlled to ensure replica consistency. To the best of our knowledge, only the most simplistic types of replica nondeterminism have been dealt with. Furthermore, there lacks a systematic approach to handling common types of nondeterminism. In this paper, we propose a classification of common types of replica nondeterminism with respect to the requirement of achieving Byzantine fault tolerance, and describe the design and implementation of the core mechanisms necessary to handle such nondeterminism within a Byzantine fault tolerance framework.Comment: To appear in the proceedings of the 3rd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 200
    • …
    corecore