1 research outputs found

    Increased central auditory gain and decreased parvalbumin-positive cortical interneuron density in the Df1/+ mouse model of schizophrenia correlate with hearing impairment

    Get PDF
    Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 Deletion Syndrome (22q11.2DS) have a 25-30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle ear inflammation. The Df1/+ mouse model of 22q11.2DS recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high inter-individual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses (ABRs), cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal ABR measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in auditory cortex but not secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2DS, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle ear inflammation
    corecore