4,574 research outputs found

    Black hole solution and strong gravitational lensing in Eddington-inspired Born-Infeld gravity

    Get PDF
    A new theory of gravity called Eddington-inspired Born-Infeld (EiBI) gravity was recently proposed by Ba\~{n}ados and Ferreira. This theory leads to some exciting new features, such as free of cosmological singularities. In this paper, we first obtain a charged EiBI black hole solution with a nonvanishing cosmological constant when the electromagnetic field is included in. Then based on it, we study the strong gravitational lensing by the asymptotic flat charged EiBI black hole. The strong deflection limit coefficients and observables are shown to closely depend on the additional coupling parameter κ\kappa in the EiBI gravity. It is found that, compared with the corresponding charged black hole in general relativity, the positive coupling parameter κ\kappa will shrink the black hole horizon and photon sphere. Moreover, the coupling parameter will decrease the angular position and relative magnitudes of the relativistic images, while increase the angular separation, which may shine new light on testing such gravity theory in near future by the astronomical instruments.Comment: 14 pages, 7 figures, 1 table. Two issues on the deflection angle and photon sphere were corrected and clarifie

    Entropy/Area spectra of the charged black hole from quasinormal modes

    Full text link
    With the new physical interpretation of quasinormal modes proposed by Maggiore, the quantum area spectra of black holes have been investigated recently. Adopting the modified Hod's treatment, results show that the area spectra for black holes are equally spaced and the spacings are in a unified form, A=8π\triangle A=8\pi \hbar, in Einstein gravity. On the other hand, following Kunstatter's method, the studies show that the area spectrum for a nonrotating black hole with no charge is equidistant. And for a rotating (or charged) black hole, it is also equidistant and independent of the angular momentum JJ (or charge qq) when the black hole is far from the extremal case. In this paper, we mainly deal with the area spectrum of the stringy charged Garfinkle-Horowitz-Strominger black hole, originating from effective action that emerges in the low-energy string theory. We find that both methods give the same results-that the area spectrum is equally spaced and does not depend on the charge qq. Our study may provide new insights into understanding the area spectrum and entropy spectrum for stringy black holes.Comment: 13 pages, no figure

    Domain wall brane in a reduced Born-Infeld-f(T)f(T) theory

    Full text link
    The Born-Infeld f(T)f(T) theory is reduced from the Born-Infeld determinantal gravity in Weitzenb\"ock spacetime. We investigate a braneworld scenario in this theory and obtain an analytic domain wall solution by utilizing the first-order formalism. The model is stable against the linear tensor perturbation. It is shown that the massless graviton is localized on the brane, but the continuous massive gravitons are non-localized and will generate a tiny correction with the behavior of 1/(kr)3{1}/{(k r)^{3}} to the Newtonian potential. The four-dimensional teleparallel gravity is recovered as an effective infrared theory on the brane. As a physical application, we consider the (quasi-)localization property of spin-1/2 Dirac fermion in this model.Comment: 9 pages, 2 figures, published versio

    Born-Infeld Black Holes in 4D Einstein-Gauss-Bonnet Gravity

    Full text link
    A novel four-dimensional Einstein-Gauss-Bonnet gravity was formulated by D. Glavan and C. Lin [Phys. Rev. Lett. 124, 081301 (2020)], which is intended to bypass the Lovelock's theorem and to yield a non-trivial contribution to the four-dimensional gravitational dynamics. However, the validity and consistency of this theory has been called into question recently. We study a static and spherically symmetric black hole charged by a Born-Infeld electric field in the novel four-dimensional Einstein-Gauss-Bonnet gravity. It is found that the black hole solution still suffers the singularity problem, since particles incident from infinity can reach the singularity. It is also demonstrated that the Born-Infeld charged black hole may be superior to the Maxwell charged black hole to be a charged extension of the Schwarzschild-AdS-like black hole in this new gravitational theory. Some basic thermodynamics of the black hole solution is also analyzed. Besides, we regain the black hole solution in the regularized four-dimensional Einstein-Gauss-Bonnet gravity proposed by H. L\"u and Y. Pang [arXiv:2003.11552].Comment: 13 pages and 18 figures, published versio
    corecore