5,515 research outputs found
Eight-potential-well order-disorder ferroelectric model and effects of random fields
An eight-potential-well order-disorder ferroelectric model was presented and
the phase transition was studied under the mean-field approximation. It was
shown that the two-body interactions are able to account for the first-order
and the second order phase transitions. With increasing the random fields in
the system, a first-order phase transition is transformed into a second-order
phase transition, and furthermore, a second-order phase transition is
inhibited.
However, proper random fields can promote the spontaneous appearance of a
first-order phase transition by increasing the overcooled temperature. The
connections of the model with relaxors were discussed.Comment: 8 pages, 5 figures. Submitted to Applied Physics Letter
The Multi-object Optimal Pass Design based on MOGA
AbstractThe optimal pass design is based on Multi-Object Genetic Algorithm (GA) with the objective of the least of total energy consumption and loads balance on bar mill. By optimization, in condition of normal rolling, the less total energy consumption and relative balanced bar mill loads. Genetic Algorithm Toolbox with Matlab software is adopted to search optimum parameters, which is a new method for the multi-object optimal pass design
The long-lasting optical afterglow plateau of short burst GRB 130912A
The short burst GRB 130912A was detected by Swift, Fermi satellites and
several ground-based optical telescopes. Its X-ray light curve decayed with
time normally. The optical emission, however, displayed a long term plateau,
which is the longest one in current short GRB observations. In this work we
examine the physical origin of the X-ray and optical emission of this peculiar
event. We find that the canonical forward shock afterglow emission model can
account for the X-ray and optical data self-consistently and the energy
injection model that has been widely adopted to interpret the
shallowly-decaying afterglow emission is not needed. We also find that the
burst was born in a very-low density interstellar medium, consistent with the
compact object merger model. Significant fractions of the energy of the forward
shock have been given to accelerate the non-thermal electrons and amplify the
magnetic fields (i.e., and , respectively), which are much larger than those inferred in most short
burst afterglow modeling and can explain why the long-lasting optical afterglow
plateau is rare in short GRBs.Comment: 5 pages, 2 figure
- …