1,794 research outputs found

    The Bc→ψ(2S)πB_c\rightarrow \psi(2S)\pi, ηc(2S)π\eta_c(2S)\pi decays in the perturbative QCD approach

    Full text link
    Nonleptonic two body BcB_c decays including radially excited ψ(2S)\psi(2S) or ηc(2S)\eta_c(2S) mesons in the final state are studied using the perturbative QCD approach based on kTk_T factorization. The charmonium distribution amplitudes are extracted from the n=2,l=0n = 2, l = 0 Schro¨\ddot{o}dinger states for the harmonic oscillator potential. Utilizing these distribution amplitudes, we calculate the numerical results of the Bc→ψ(2S),ηc(2S)B_c\rightarrow \psi(2S),\eta_c(2S) transition form factors and branching fractions of Bc→ψ(2S)π,ηc(2S)πB_c\rightarrow \psi(2S)\pi, \eta_c(2S)\pi decays. The ratio between two decay modes Bc→ψ(2S)πB_c\rightarrow \psi(2S)\pi and Bc→J/ψπB_c\rightarrow J/\psi\pi is compatible with the experimental data within uncertainties, which indicate that the harmonic oscillator wave functions for ψ(2S)\psi(2S) and ηc(2S)\eta_c(2S) work well. It is found that the branching fraction of Bc→ηc(2S)πB_c\rightarrow \eta_c(2S)\pi, which is dominated by the twist-3 charmonium distribution amplitude, can reach the order of 10−310^{-3}. We hope it can be measured soon in the LHCb experiment.Comment: 9 pages, 3 figures,3 Table

    Glue-on AdS holography for TTˉT\bar T-deformed CFTs

    Full text link
    The TTˉT\bar T deformation is a solvable irrelevant deformation whose properties depend on the sign of the deformation parameter μ\mu. In particular, TTˉT\bar T-deformed CFTs with μ<0\mu<0 have been proposed to be holographically dual to Einstein gravity where the metric satisfies Dirichlet boundary conditions at a finite cutoff surface. In this paper, we put forward a holographic proposal for TTˉT\bar T-deformed CFTs with μ>0\mu>0, in which case the bulk geometry is constructed by gluing a patch of AdS3_3 to the original spacetime. As evidence, we show that the TTˉT\bar T trace flow equation, the spectrum on the cylinder, and the partition function on the torus and the sphere, among other results, can all be reproduced from bulk calculations in glue-on AdS3_3.Comment: 33 pages, 1 figure; v2: clarifications and references added, matches published versio

    Recent progress in migraine and cognitive disorder

    Get PDF
    Migraine is a chronic neurovascular disease characterized by recurrent unilateral headache, which induces incapacity. At present, there are many methods to evaluate cognitive function, and the cognitive function scale is commonly used. Recently, event-related potentials, resting state functional magnetic resonance imaging and other new technologies have been widely used to assess the cognitive function of migraine patients because of their high temporal resolution and high spatial resolution. In this paper, we can overview that the research progress of the relationship between migraine and methods of evaluate cognitive function

    Production of Spin-Semiconducting Zigzag Graphene Nanoribbons by Constructing Asymmetric Notch on Graphene Edges

    Full text link
    The electronic and magnetic properties of zigzag graphene nanoribbons with asymmetric notches along their edges are investigated by first principle density functional theory calculations. It is found that the electronic and magnetic properties of the asymmetrically-notched graphene nanoribbons are closely related with the depth of notches, but weekly dependent on the length of notches. As the relative depth of notch increases, the energy level of spin-up and spin-down becomes greatly shifted, associated with the gradual increase of magnetic momentum. The asymmetric band shift allows the asymmetrically notched graphene nanoribbons to be a spintronic semiconductor, through which an N- or P-type spin-semiconductor can be obtained by doping B or N atoms

    (E)-4-Chloro-N-(2,4,6-trimethyl­benzyl­idene)aniline

    Get PDF
    In the title compound, C16H16ClN, the dihedral angle between the benzene rings is 24.61 (13)°. In the crystal, only van der Waals inter­actions occur between neighbouring mol­ecules

    Endolymphatic sac tumor: case report and review of the literature

    Get PDF
    Endolymphatic sac tumor (ELST) is a rare neoplasm which can be encountered sporadically or in Von Hippel-Lindau (VHL) disease. Here we report a sporadic case of ELST in 31-year-old man. Neither the symptoms nor a family history of VHL disease were found in the patient. CT imaging demonstrated an expansile lytic lesion of the mastoid process of the left petrous bone. MR scanning revealed a 5.2 cm × 4.7 cm × 4.2 cm mass which showed hyperintensity on T1- and T2-weighted images. Histologic sections showed a papillary, cystic or glandular architecture. The papillary and glandular structures were lined by a single layer of flattened cuboidal-to-columnar cells. The stroma of the papillary fronds was richly vascularized and chronically inflamed. The tumor showed diffusely positive reactivity with cytokeratin (Pan), cytokeratin 19, cytokeratin 5/6, cytokeratin 7, EMA, vimentin, CD56, and NSE and also showed variable reactivity with glial fibrillary acidic protein (GFAP) and VEGF. The Ki-67 immunostain showed a proliferation index of < 1%. Because the mass was large, it was difficult to extirpate surgically. After surgery, the patient underwent gamma-knife radiosurgery for residual tumor. The findings indicate that ELST is a rare neoplasm with benign histopathological appearance and clinically destructive behavior. Because of the rarity of this tumor, it can easily be confused with other tumors such as paraganglioma, middle ear adenoma, adenocarcinoma, papillary carcinoma of thyroid or choroid plexus papilloma. Owing to its locally aggressive nature, it is difficult to extirpate surgically when it is large

    Quantum sensing of temperature close to absolute zero in a Bose-Einstein condensate

    Full text link
    We propose a theoretical scheme for quantum sensing of temperature close to absolute zero in a quasi-one-dimensional Bose-Einstein condensate (BEC). In our scheme, a single-atom impurity qubit is used as a temper-ature sensor. We investigate the sensitivity of the single-atom sensor in estimating the temperature of the BEC. We demonstrate that the sensitivity of the temperature sensor can saturate the quantum Cramer-Rao bound by means of measuring quantum coherence of the probe qubit. We study the temperature sensing performance by the use of quantum signal-to-noise ratio (QSNR). It is indicated that there is an optimal encoding time that the QSNR can reach its maximum in the full-temperature regime. In particular, we find that the QSNR reaches a finite upper bound in the weak coupling regime even when the temperature is close to absolute zero, which implies that the sensing-error-divergence problem is avoided in our scheme. Our work opens a way for quantum sensing of temperature close to absolute zero in the BEC.Comment: 9 pages,9 figure
    • …
    corecore