3,658 research outputs found

    Sub-Band Knowledge Distillation Framework for Speech Enhancement

    Full text link
    In single-channel speech enhancement, methods based on full-band spectral features have been widely studied. However, only a few methods pay attention to non-full-band spectral features. In this paper, we explore a knowledge distillation framework based on sub-band spectral mapping for single-channel speech enhancement. Specifically, we divide the full frequency band into multiple sub-bands and pre-train an elite-level sub-band enhancement model (teacher model) for each sub-band. These teacher models are dedicated to processing their own sub-bands. Next, under the teacher models' guidance, we train a general sub-band enhancement model (student model) that works for all sub-bands. Without increasing the number of model parameters and computational complexity, the student model's performance is further improved. To evaluate our proposed method, we conducted a large number of experiments on an open-source data set. The final experimental results show that the guidance from the elite-level teacher models dramatically improves the student model's performance, which exceeds the full-band model by employing fewer parameters.Comment: Published in Interspeech 202

    (1SR,2RS,3SR,5SR,6RS)-6-[(Z)-1-Acet­oxy-2-phenyl­ethen­yl]-3-eth­oxy-2-phenyl­bicyclo­[3.1.0]hexan-1-yl acetate

    Get PDF
    The mol­ecule of the title compound, C26H28O5, is chiral with five stereogenic centres; however, the centrosymmetric triclinic group gives a racemic crystal. The fused ring system adopta boat conformation in which the cyclo­propane ring plane is roughly perpendicular to the styryl group plane, forming a dihedral angle of 74.78 (19)°. The dihedral angle between the two benzene rings is 77.24 (6)°

    Data Acquisition and Control System for Broad-band Microwave Reflectometry on EAST

    Full text link
    Microwave reflectometry is a non-intrusive plasma diagnostic tool which is widely applied in many fusion devices. In 2014, the microwave reflectometry on Experimental Advanced Superconducting Tokamak (EAST) had been upgraded to measure plasma density profile and fluctuation, which covered the frequency range of Q-band (32-56 GHz), V-band (47-76 GHz) and W-band (71-110 GHz). This paper presented a dedicated data acquisition and control system (DAQC) to meet the measurement requirements of high accuracy and temporal resolution. The DAQC consisted of two control modules, which integrated arbitrary waveform generation block (AWG) and trigger processing block (TP), and two data acquisition modules (DAQ) that was implemented base on the PXIe platform from National Instruments (NI). All the performance parameters had satisfied the requirements of reflectometry. The actual performance will be further examined in the experiments of EAST in 2014.Comment: 2 pages, 2 figures, 19th IEEE-NPSS Real-Time conferenc
    • …
    corecore