10,101 research outputs found

    Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

    Full text link
    Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new dataset called MSMT17 with many important features, e.g., 1) the raw videos are taken by an 15-camera network deployed in both indoor and outdoor scenes, 2) the videos cover a long period of time and present complex lighting variations, and 3) it contains currently the largest number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe that, domain gap commonly exists between datasets, which essentially causes severe performance drop when training and testing on different datasets. This results in that available training data cannot be effectively leveraged for new testing domains. To relieve the expensive costs of annotating new training samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to bridge the domain gap. Comprehensive experiments show that the domain gap could be substantially narrowed-down by the PTGAN.Comment: 10 pages, 9 figures; accepted in CVPR 201

    Cryptanalysis of a multi-party quantum key agreement protocol with single particles

    Full text link
    Recently, Sun et al. [Quant Inf Proc DOI: 10.1007/s11128-013-0569-x] presented an efficient multi-party quantum key agreement (QKA) protocol by employing single particles and unitary operations. The aim of this protocol is to fairly and securely negotiate a secret session key among NN parties with a high qubit efficiency. In addition, the authors claimed that no participant can learn anything more than his/her prescribed output in this protocol, i.e., the sub-secret keys of the participants can be kept secret during the protocol. However, here we points out that the sub-secret of a participant in Sun et al.'s protocol can be eavesdropped by the two participants next to him/her. In addition, a certain number of dishonest participants can fully determine the final shared key in this protocol. Finally, we discuss the factors that should be considered when designing a really fair and secure QKA protocol.Comment: 7 page
    • …
    corecore