10,101 research outputs found
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
Although the performance of person Re-Identification (ReID) has been
significantly boosted, many challenging issues in real scenarios have not been
fully investigated, e.g., the complex scenes and lighting variations, viewpoint
and pose changes, and the large number of identities in a camera network. To
facilitate the research towards conquering those issues, this paper contributes
a new dataset called MSMT17 with many important features, e.g., 1) the raw
videos are taken by an 15-camera network deployed in both indoor and outdoor
scenes, 2) the videos cover a long period of time and present complex lighting
variations, and 3) it contains currently the largest number of annotated
identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe
that, domain gap commonly exists between datasets, which essentially causes
severe performance drop when training and testing on different datasets. This
results in that available training data cannot be effectively leveraged for new
testing domains. To relieve the expensive costs of annotating new training
samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to
bridge the domain gap. Comprehensive experiments show that the domain gap could
be substantially narrowed-down by the PTGAN.Comment: 10 pages, 9 figures; accepted in CVPR 201
Cryptanalysis of a multi-party quantum key agreement protocol with single particles
Recently, Sun et al. [Quant Inf Proc DOI: 10.1007/s11128-013-0569-x]
presented an efficient multi-party quantum key agreement (QKA) protocol by
employing single particles and unitary operations. The aim of this protocol is
to fairly and securely negotiate a secret session key among parties with a
high qubit efficiency. In addition, the authors claimed that no participant can
learn anything more than his/her prescribed output in this protocol, i.e., the
sub-secret keys of the participants can be kept secret during the protocol.
However, here we points out that the sub-secret of a participant in Sun et
al.'s protocol can be eavesdropped by the two participants next to him/her. In
addition, a certain number of dishonest participants can fully determine the
final shared key in this protocol. Finally, we discuss the factors that should
be considered when designing a really fair and secure QKA protocol.Comment: 7 page
- …