1,334 research outputs found

    Synthesizing and characterization of hole doped nickel based layer superconductor (La1x_{1-x}Srx_{x})ONiAs

    Full text link
    We report the synthesizing and characterization of the hole doped Ni-based superconductor (La1xSrx)ONiAsLa_{1-x}Sr_{x})ONiAs. By substituting La with Sr, the superconducting transition temperature TcT_c is increased from 2.75 K of the parent phase LaONiAsLaONiAs to 3.7 K at the doping levels x= 0.1 - 0.2. The curve TcT_c versus hole concentration shows a symmetric behavior as the electron doped samples La(O1xFx)NiAsLa(O_{1-x}F_{x})NiAs. The normal state resistivity in Ni-based samples shows a good metallic behavior and reveals the absence of an anomaly which appears in the Fe-based system at about 150 K, suggesting that this anomaly is not a common feature for all systems. Hall effect measurements indicate that the electron conduction in the parent phase LaONiAsLaONiAs is dominated by electron-like charge carriers, while with more Sr doping, a hole-like band will emerge and finally prevail over the conduction, and accordingly the superconducting transition temperature TcT_c increases.Comment: 4 pages, 5 figure

    Transition of stoichiometricSr2VO3FeAs to a superconducting state at 37.2 K

    Full text link
    The superconductor Sr4V2O6Fe2As2 with transition temperature at 37.2 K has been fabricated. It has a layered structure with the space group of p4/nmm, and with the lattice constants a = 3.9296Aand c = 15.6732A. The observed large diamagnetization signal and zero-resistance demonstrated the bulk superconductivity. The broadening of resistive transition was measured under different magnetic fields leading to the discovery of a rather high upper critical field. The results also suggest a large vortex liquid region which reflects high anisotropy of the system. The Hall effect measurements revealed dominantly electron-like charge carriers in this material. The superconductivity in the present system may be induced by oxygen deficiency or the multiple valence states of vanadium.Comment: 5 pages, 4 figure

    Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase

    Full text link
    Superconductivity at about 15.6 K was achieved in Tb_{1-x}Ca_xFeAsO by partially substituting Tb^{3+} with Ca^{2+} in the nominal doping region x = 0.40 \sim 0.50. A detailed investigation was carried out in a typical sample with doping level of x = 0.44. The upper critical field of this sample was estimated to be 77 Tesla from the magnetic field dependent resistivity data. The domination of hole-like charge carriers in the low-temperature region was confirmed by Hall effect measurements. The comparison between the calcium-doped sample Pr_{1-x}Ca_xFeAsO (non-superconductive) and the Strontium-doped sample Pr_{1-x}Sr_xFeAsO (superconductive) suggests that a lager ion radius of the doped alkaline-earth element compared with that of the rare-earth element may be a necessary requirement for achieving superconductivity in the hole-doped 1111 phase.Comment: 7 pages, 7 figure

    8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2\u27-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation

    Get PDF
    8-Oxo-7,8-dihydro-2\u27-deoxyguanosine (8-oxodGuo) is the most investigated product of oxidatively damaged DNA lesion that has been associated with the development of aging, cancer and some degenerative diseases. Here, we present the first liquid chromatography-tandem mass spectrometry method that enables the simultaneous measurement of its repair products in plasma and saliva, namely 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxodGuo. Using this method, we investigated the underlying transport mechanism of the repair products of oxidatively damaged DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples were collected concurrently from 57 healthy subjects. Various deproteinization methods were evaluated, and the precipitants acetonitrile and sodium hydroxide-methanol were, respectively, selected for plasma and saliva samples due to their effect on recovery efficiencies and chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were demonstrated to be 0.21 and 0.016 ng/mL, respectively, while in saliva they were 0.85 and 0.010 ng/mL, respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 0.6), implying that 8-oxoGua in plasma may be actively transported to saliva, whereas 8-oxodGuo was most dependent on a passive diffusion. Good correlations between urine and plasma concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was only observed when the concentrations were not corrected for urinary creatinine, raising the issue of applicability of urinary creatinine to adjust 8-oxoGua concentrations

    8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2\u27-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation

    Get PDF
    8-Oxo-7,8-dihydro-2\u27-deoxyguanosine (8-oxodGuo) is the most investigated product of oxidatively damaged DNA lesion that has been associated with the development of aging, cancer and some degenerative diseases. Here, we present the first liquid chromatography-tandem mass spectrometry method that enables the simultaneous measurement of its repair products in plasma and saliva, namely 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxodGuo. Using this method, we investigated the underlying transport mechanism of the repair products of oxidatively damaged DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples were collected concurrently from 57 healthy subjects. Various deproteinization methods were evaluated, and the precipitants acetonitrile and sodium hydroxide-methanol were, respectively, selected for plasma and saliva samples due to their effect on recovery efficiencies and chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were demonstrated to be 0.21 and 0.016 ng/mL, respectively, while in saliva they were 0.85 and 0.010 ng/mL, respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 0.6), implying that 8-oxoGua in plasma may be actively transported to saliva, whereas 8-oxodGuo was most dependent on a passive diffusion. Good correlations between urine and plasma concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was only observed when the concentrations were not corrected for urinary creatinine, raising the issue of applicability of urinary creatinine to adjust 8-oxoGua concentrations

    Physical properties of noncentrosymmetric superconductor Ru7_7B3_3

    Full text link
    Transition metal boride Ru7_7B3_3 was found to be a noncentrosymmetric superconductor with TCT_{C} equal to 3.3 K. Superconducting and normal state properties of Ru7_7B3_3 were determined by a self-consistent analysis through resistivity(ρxx\rho_{xx} and ρxy\rho_{xy}), specific heat, lower critical field measurement and electronic band structure calculation. It is found that Ru7_7B3_3 belongs to an s-wave dominated single band superconductor with energy gap 0.5 meV and could be categorized into type II superconductor with weak electron-phonon coupling. Unusual 'kink' feature is clearly observed in field-broadening resistivity curves, suggesting the possible mixture of spin triplet induced by the lattice without inversion symmetry.Comment: 11 pages, 16 figures. submitted to Phys. Rev.
    corecore