2,426 research outputs found

    Analysis of E-Business and Traditional Business Based on the Modified Akerlof Model

    Get PDF
    In this paper, E-business and traditional business is investigated based on the modified Akerlof model to explain the reason why the E-business has developed rapidly in case of information asymmetry; on the other hand, adverse selections appear in the traditional business. In the end, the corresponding suggestions are put forward on coordinated development of the E-business and traditional business

    Symmetry protected topological orders and the group cohomology of their symmetry group

    Get PDF
    Symmetry protected topological (SPT) phases are gapped short-range-entangled quantum phases with a symmetry G. They can all be smoothly connected to the same trivial product state if we break the symmetry. The Haldane phase of spin-1 chain is the first example of SPT phase which is protected by SO(3) spin rotation symmetry. The topological insulator is another exam- ple of SPT phase which is protected by U(1) and time reversal symmetries. It has been shown that free fermion SPT phases can be systematically described by the K-theory. In this paper, we show that interacting bosonic SPT phases can be systematically described by group cohomology theory: distinct d-dimensional bosonic SPT phases with on-site symmetry G (which may contain anti-unitary time reversal symmetry) can be labeled by the elements in H^{1+d}[G, U_T(1)] - the Borel (1 + d)-group-cohomology classes of G over the G-module U_T(1). The boundary excitations of the non-trivial SPT phases are gapless or degenerate. Even more generally, we find that the different bosonic symmetry breaking short-range-entangled phases are labeled by the following three mathematical objects: (G_H, G_{\Psi}, H^{1+d}[G_{\Psi}, U_T(1)], where G_H is the symmetry group of the Hamiltonian and G_{\Psi} the symmetry group of the ground states.Comment: 55 pages, 42 figures, RevTeX4-1, included some new reference

    Gapped spin liquid with Z2\mathbb{Z}_2-topological order for kagome Heisenberg model

    Get PDF
    We apply symmetric tensor network state (TNS) to study the nearest neighbor spin-1/2 antiferromagnetic Heisenberg model on Kagome lattice. Our method keeps track of the global and gauge symmetries in TNS update procedure and in tensor renormalization group (TRG) calculation. We also introduce a very sensitive probe for the gap of the ground state -- the modular matrices, which can also determine the topological order if the ground state is gapped. We find that the ground state of Heisenberg model on Kagome lattice is a gapped spin liquid with the Z2\mathbb{Z}_2-topological order (or toric code type), which has a long correlation length ξ∼10\xi\sim 10 unit cell length. We justify that the TRG method can handle very large systems with over thousands of spins. Such a long ξ\xi explains the gapless behaviors observed in simulations on smaller systems with less than 300 spins or shorter than 10 unit cell length. We also discuss experimental implications of the topological excitations encoded in our symmetric tensors.Comment: 10 pages, 7 figure
    • …
    corecore