9,548 research outputs found

    Heat-kernel approach for scattering

    Get PDF
    An approach for solving scattering problems, based on two quantum field theory methods, the heat kernel method and the scattering spectral method, is constructed. This approach converts a method of calculating heat kernels into a method of solving scattering problems. This allows us to establish a method of scattering problems from a method of heat kernels. As an application, we construct an approach for solving scattering problems based on the covariant perturbation theory of heat-kernel expansions. In order to apply the heat-kernel method to scattering problems, we first calculate the off-diagonal heat-kernel expansion in the frame of the covariant perturbation theory. Moreover, as an alternative application of the relation between heat kernels and partial-wave phase shifts presented in this paper, we give an example of how to calculate a global heat kernel from a known scattering phase shift

    Scattering theory without large-distance asymptotics

    Full text link
    In conventional scattering theory, to obtain an explicit result, one imposes a precondition that the distance between target and observer is infinite. With the help of this precondition, one can asymptotically replace the Hankel function and the Bessel function with the sine functions so that one can achieve an explicit result. Nevertheless, after such a treatment, the information of the distance between target and observer is inevitably lost. In this paper, we show that such a precondition is not necessary: without losing any information of distance, one can still obtain an explicit result of a scattering rigorously. In other words, we give an rigorous explicit scattering result which contains the information of distance between target and observer. We show that at a finite distance, a modification factor --- the Bessel polynomial --- appears in the scattering amplitude, and, consequently, the cross section depends on the distance, the outgoing wave-front surface is no longer a sphere, and, besides the phase shift, there is an additional phase (the argument of the Bessel polynomial) appears in the scattering wave function

    A 1+5-dimensional gravitational-wave solution: curvature singularity and spacetime singularity

    Full text link
    We solve a 1+51+5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities
    • …
    corecore