1,226 research outputs found

    A Task Allocation Algorithm with Weighted Average Velocity Based on Online Active Period

    Get PDF
    In some complex scientific calculation, the resources of the calculation are very large. To a certain extent, the improvement of the computer level has met the needs of many computing, but a lot of more complex calculation cannot still be effectively resolved. Volunteer computing is a computational method that divides the complexity of computing tasks into simple subtasks, and collects the results of volunteer computing resources to solve the subtasks. In this calculation process, the task assignment module is an extremely important part of the whole computing platform. Many of the existing task allocation algorithms (TAA) are used to group by the similar conditions of the volunteer computer. TAA used in this work grouped by the computers with similar online active period, and the computation efficiency is improved by using the weighted average velocity as a parameter. The experimental results showed that TAA with the weighted average velocity based on online active period can effectively improve the performance of the volunteer computing platform. Keywords: Volunteer computing; Task allocation algorithm; Weighted average velocity; Online active perio

    Entropy generation and exergy destruction in condensing steam flow through turbine blade with surface roughness

    Get PDF
    In the steam turbine, the wetness loss due to vapor condensation is one of the most crucial losses at low-pressure stage. This study focused on entropy generation and exergy destruction of condensing steam flow in turbine blade with the roughness. The governing equations including entropy transport equation combined with condensation model, transition SST model and roughness correlation were established and verified by experiments and theory. Flow field behaviors, such as wetness fraction, intermittency and turbulent viscosity distributions, controlled by the deviation angle were obtained to evaluate effects of back pressure ratio and surface roughness. The mass-averaged wetness fraction at outlet was also extracted considering the influence of uneven mass flux. Finally, each part of entropy generation derived from viscous, heat conduction, phase change and aerodynamic losses and exergy destruction ratio were analyzed. Research shows that roughness plays an important part in the intermittency and turbulent viscosity. The mass-averaged wetness fraction at outlet sharply drops with back pressure ratio but slightly decreases with the roughness. With the roughness rising or back pressure dropping, the entropy generation grows resulting in more exergy destruction. The maximum value of the total entropy generation is 84.520 J·kg−1·K−1, corresponding exergy destruction is 25.187 kJ·kg−1 and exergy destruction ratio is 4.43%

    Feature Extraction of Oscillating Flow with Vapor Condensation of Moist Air in a Sonic Nozzle

    Get PDF
    The sonic nozzle is commonly used in flow measurement. However, the non-equilibrium condensation phenomenon of moist air in the nozzle has a negative effect on the measuring accuracy. To investigate this complex phenomenon, the experiments on the oscillating condensation flow of moist air were conducted by an adjustable humidification apparatus with different relative humidity (0-100%), temperature (30-50° C) and carrier gas pressure (1-6 bar), where the micro size pressure measuring system was designed by Bergh-Tijdeman (B-T) Model. The accurate mathematical model of nonequilibrium condensation was also built and validated by the experimental data of time-averaged pressure distribution. Then, the frequency and intensity of pressure fluctuation of oscillating flow at a wide range of operation condition were obtained combining experimental data and physical simulation model. Importantly, a new semi-empirical relation of dimensionless frequency deduced from dimensionless analysis was identified accurately by experimental data. Finally, the signal nonstationarity was also observed by using the continuous wavelet transform (CWT). The instantaneous frequency saltation and the energy attenuation of pressure signals were observed in the condensation flow

    Droplet behavior of non-equilibrium condensation in the supersonic separator

    Get PDF

    Polydispersed droplet spectrum and exergy analysis in wet steam flows using method of moments

    Get PDF
    In steam turbine flow, the complex droplet spectrum caused by nonequilibrium condensation is necessary to be modeled accurately to predict the droplet behavior and estimate the exergy destruction and erosion rate. This study built and validated a polydispersed model with Quadrature method of moments (QMOM), consisting of transition SST model, the moments and entropy generation. A spline-based algorithm was used to reconstruct the shape of the probability density function (PDF) of radius. It’s proved that the polydispersed model has a better prediction result for Sauter radius compare with monodispersed model. Then, the distributions of moments and droplet spectra in the nozzle with effects of asymmetric lambda shock and evaporation were investigated. The shape of droplet spectrum is closer to gamma distribution in nucleation zone and log-normal distribution in growth zone when outflow is supersonic. In the turbine, because the oblique shock induces complex evaporation and secondary condensation, the reconstructed shape is closer to gamma distribution. Finally, the obtained maximum exergy destruction is 25.293 kJ/kg. The rate of exergy destruction increases from 1.04% to 4.45%. The range of Baumann factor is 0.574–1.312. Besides, the erosion rate in polydispersed model is only 58.4–64.3% of monodispersed model. The polydispersed model used in this study can predict the droplet spectrum and energy loss of the turbine systems more accurately
    • …
    corecore