24,860 research outputs found

    Josephson Effects in Double-Layer Quantum Hall States

    Full text link
    Under quite plausible assumptions on double-layer quantum Hall states with strong interlayer correlation, we show in general framwork that coherent tunneling of a single electron between two layers is possible. It yields Josephson effects with unit charge tunneling. The origin is that Halperin states in the quantum Hall states are highly degenerate in electron number difference between two layers in the absence of electrons tunneling.Comment: 9 Pages, Revtex Inpress Int.J.Mod.Phys.

    Coupled-channel study of gamma p --> K+ Lambda

    Get PDF
    A coupled-channel (CC) approach has been developed to investigate kaon photoproduction on the nucleon. In addition to direct K+ Lambda production, our CC approach accounts for strangeness production including K+ Lambda final state interactions with both pi0 p and pi+ n intermediate states. Calculations for the gamma p --> K+ Lambda reaction have been performed, and compared with the recent data from SAPHIR, with emphasis on the CC effects. We show that the CC effects are significant at the level of inducing 20% changes on total cross sections; thereby, demonstrating the need to include pi N channels to correctly describe the gamma p --> K+ Lambda reaction.Comment: 12 pages, 6 eps figures, uses elsart.cls, submitted to Phys.Lett.B; v2: added paragraph in section

    Dynamical coupled-channel model of kaon-hyperon interactions

    Full text link
    The pi N --> KY and KY --> KY reactions are studied using a dynamical coupled-channel model of meson-baryon interactions at energies where the baryon resonances are strongly excited. The channels included are: pi N, K \Lambda, and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710), P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910), P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660), D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY transition potentials are derived from effective Lagrangians using a unitary transformation method. The dynamical coupled-channel equations are simplified by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N partial-wave amplitudes and a phenomenological off-shell function. Two models have been constructed. Model A is built by fixing all coupling constants and resonance parameters using SU(3) symmetry, the Particle Data Group values, and results from a constituent quark model. Model B is obtained by allowing most of the parameters to vary around the values of model A in fitting the data. Good fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been achieved. The investigated kinematics region in the center-of-mass frame goes from threshold to 2.5 GeV. The constructed models can be imbedded into associated dynamical coupled-channel studies of kaon photo- and electro-production reactions.Comment: 35 pages, 11 Figure

    Correlated Topological Insulators and the Fractional Magnetoelectric Effect

    Full text link
    Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk theta term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional theta/pi. We show that fractional theta/pi is only possible in a gapped time reversal invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically non-trivial spaces. We illustrate this result with a concrete example of a time reversal symmetric topological insulator of correlated bosons with theta = pi/4. Extensions to electronic fractional topological insulators are briefly described.Comment: 4 pages + ref

    A balancing act: Evidence for a strong subdominant d-wave pairing channel in Ba0.6K0.4Fe2As2{\rm Ba_{0.6}K_{0.4}Fe_2As_2}

    Full text link
    We present an analysis of the Raman spectra of optimally doped Ba0.6K0.4Fe2As2{\rm Ba_{0.6}K_{0.4}Fe_2As_2} based on LDA band structure calculations and the subsequent estimation of effective Raman vertices. Experimentally a narrow, emergent mode appears in the B1gB_{1g} (dx2y2d_{x^2-y^2}) Raman spectra only below TcT_c, well into the superconducting state and at an energy below twice the energy gap on the electron Fermi surface sheets. The Raman spectra can be reproduced quantitatively with estimates for the magnitude and momentum space structure of the s+_{+-} pairing gap on different Fermi surface sheets, as well as the identification of the emergent sharp feature as a Bardasis-Schrieffer exciton, formed as a Cooper pair bound state in a subdominant dx2y2d_{x^2-y^2} channel. The binding energy of the exciton relative to the gap edge shows that the coupling strength in this subdominant dx2y2d_{x^2-y^2} channel is as strong as 60% of that in the dominant s+s_{+-} channel. This result suggests that dx2y2d_{x^2-y^2} may be the dominant pairing symmetry in Fe-based sperconductors which lack central hole bands.Comment: 10 pages, 6 Figure

    Gravitational Corrections to Φ4\Phi^{4} Theory with Spontaneously Broken Symmetry

    Full text link
    We consider a complex scalar Φ4\Phi^4 theory with spontaneously broken global U(1) symmetry, minimally coupling to perturbatively quantized Einstein gravity which is treated as an effective theory at the energy well below the Planck scale. Both the lowest order pure real scalar correction and the gravitational correction to the renormalization of the Higgs sector in this model have been investigated. Our results show that the gravitational correction renders the renormalization of the Higgs sector in this model inconsistent while the pure real scalar correction to it leads to a compatible renormalization.Comment: 11 pages, 24 figure

    Benchmarking a self-consistent field theory for small amphiphilic molecules

    Get PDF
    DOI: 10.1039/C2SM26352A (Paper) Soft Matter, 2012, 8, 9877-9885 This journal is © The Royal Society of Chemistry 2012A minimalist self-consistent field theory for small amphiphilic molecules is presented. The equations for this model are less involved than those for block copolymers and are easily implemented computationally. A new convergence technique based on a variant of Anderson mixing is also presented which allows the equations to be solved more rapidly than block copolymer self-consistent field theory. The computational speed up and simplicity of equations result from a lack of configurational degrees of freedom in the amphiphilic molecular model. The omission of polymeric flexibility leads to qualitatively different predictions compared to known diblock copolymer behaviour.University of Waterloo International Work Study Progra

    Bosonic model with Z3Z_3 fractionalization

    Get PDF
    Bosonic model with unfrustrated hopping and short-range repulsive interaction is constructed that realizes Z3Z_3 fractionalized insulator phase in two dimensions and in zero magnetic field. Such phase is characterized as having gapped charged excitations that carry fractional electrical charge 1/3 and also gapped Z3Z_3 vortices above the topologically ordered ground state.Comment: 7 pages, 3 figure

    Quantum Hall Ferromagnets

    Full text link
    It is pointed out recently that the ν=1/m\nu=1/m quantum Hall states in bilayer systems behave like easy plane quantum ferromagnets. We study the magnetotransport of these systems using their ``ferromagnetic" properties and a novel spin-charge relation of their excitations. The general transport is a combination of the ususal Hall transport and a time dependent transport with quantizedquantized time average. The latter is due to a phase slippage process in spacetimespacetime and is characterized by two topological constants. (Figures will be provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit

    Intrinsic Percolative Superconductivity in KxFe2-ySe2 Single Crystals

    Full text link
    Magnetic field penetration and magnetization hysteresis loops (MHLs) have been measured in KxFe2-ySe2 single crystals. The magnetic field penetration shows a two-step feature with a very small full-magnetic-penetration field (Hp1= 300 Oe at 2 K), and accordingly the MHL exhibits an abnormal vanishing of the central peak near zero field below 13 K. The width of the MHL in KxFe2-ySe2 at the same temperature is in general much smaller than that measured in the relatives Ba0.6K0.4Fe2As2 and Ba(Fe0.92Co0.08)2As2, and the MHLs in the latter two samples show the normal central peak near zero field. All these anomalies found in KxFe2-ySe2 can be understood in the picture that the sample is percolative with weakly coupled superconducting islands.Comment: 5 page, 4 figure
    corecore