28,347 research outputs found

    Structure and stability of quasi-two-dimensional boson-fermion mixtures with vortex-antivortex superposed states

    Full text link
    We investigate the equilibrium properties of a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex-antivortex superposed state (VAVSS) using a quantum-hydrodynamic model. We show that, depending on the choice of parameters, the DBFM with a VAVSS can exhibit rich phase structures. For repulsive boson-fermion (BF) interaction, the Bose-Einstein condensate (BEC) may constitute a petal-shaped "core" inside the honeycomb-like fermionic component, or a ring-shaped joint "shell" around the onion-like fermionic cloud, or multiple segregated "islands" embedded in the disc-shaped Fermi gas. For attractive BF interaction just below the threshold for collapse, an almost complete mixing between the bosonic and fermionic components is formed, where the fermionic component tends to mimic a bosonic VAVSS. The influence of an anharmonic trap on the density distributions of the DBFM with a bosonic VAVSS is discussed. In addition, a stability region for different cases of DBFM (without vortex, with a bosonic vortex, and with a bosonic VAVSS) with specific parameters is given.Comment: 8 pages,5 figure

    Exotic-Hadron Signature by Constituent-Counting Rule in Perturbative QCD

    Full text link
    We explain a method to find internal quark configurations of exotic hadron candidates by using the constituent counting rule. The counting rule was theoretically predicted in perturbative QCD for hard exclusive hadron reactions, and it has been tested in experiments for stable hadrons including compound systems of hadrons such as the deuteron, 3^3H, and 3^3He. It indicates that the cross section scales as dσ/dt∼1/sn−2d\sigma /dt \sim 1/s^{n-2}, where ss is the center-of-mass energy squared and nn is the total number of constituents. We apply this method for finding internal configurations of exotic hadron candidates, especially Λ(1405)\Lambda (1405). There is a possibility that Λ(1405)\Lambda (1405) could be five-quark state or a KˉN\bar K N molecule, and scaling properties should be different between the ordinary three-quark state or five-quark one. We predict such a difference in π−+p→K0+Λ(1405)\pi^- + p \to K^0 + \Lambda (1405), and it could be experimentally tested, for example, at J-PARC. On the other hand, there are already measurements for γ+p→K++Λ(1405)\gamma + p \to K^+ + \Lambda (1405) as well as the ground Λ\Lambda in photoproduction reactions. Analyzing such data, we found an interesting indication that Λ(1405)\Lambda (1405) looks like a five-quark state at medium energies and a three-quark one at high energies. However, accurate higher-energy measurements are necessary for drawing a solid conclusion, and it should be done at JLab by using the updated 12 GeV electron beam. Furthermore, we discuss studies of exotic hadron candidates, such as f0(980)f_0 (980) and a0(980)a_0 (980), in electron-positron annihilation by using generalized distribution amplitudes and the counting rule. These studies should be possible as a KEKB experiment.Comment: 6 pages, LaTeX, 10 eps files, to be published in JPS Conf. Proc., Proceedings of the 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016), July 25-30, 2016, Kyoto, Japa

    Hole Doping Dependence of the Coherence Length in La2−xSrxCuO4La_{2-x}Sr_xCuO_4 Thin Films

    Full text link
    By measuring the field and temperature dependence of magnetization on systematically doped La2−xSrxCuO4La_{2-x}Sr_xCuO_4 thin films, the critical current density jc(0)j_c(0) and the collective pinning energy Up(0)U_p(0) are determined in single vortex creep regime. Together with the published data of superfluid density, condensation energy and anisotropy, for the first time we derive the doping dependence of the coherence length or vortex core size in wide doping regime directly from the low temperature data. It is found that the coherence length drops in the underdoped region and increases in the overdoped side with the increase of hole concentration. The result in underdoped region clearly deviates from what expected by the pre-formed pairing model if one simply associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure

    Bosonization Theory of Excitons in One-dimensional Narrow Gap Semiconductors

    Full text link
    Excitons in one-dimensional narrow gap semiconductors of anti-crossing quantum Hall edge states are investigated using a bosonization method. The excitonic states are studied by mapping the problem into a non-integrable sine-Gordon type model. We also find that many-body interactions lead to a strong enhancement of the band gap. We have estimated when an exciton instability may occur.Comment: 4pages, 1 figure, to appear in Phys. Rev. B Brief Report

    Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors

    Get PDF
    We report for the first time general geometrical expressions for the angular resolution of an arbitrary network of interferometric gravitational-wave (GW) detectors when the arrival-time of a GW is unknown. We show explicitly elements that decide the angular resolution of a GW detector network. In particular, we show the dependence of the angular resolution on areas formed by projections of pairs of detectors and how they are weighted by sensitivities of individual detectors. Numerical simulations are used to demonstrate the capabilities of the current GW detector network. We confirm that the angular resolution is poor along the plane formed by current LIGO-Virgo detectors. A factor of a few to more than ten fold improvement of the angular resolution can be achieved if the proposed new GW detectors LCGT or AIGO are added to the network. We also discuss the implications of our results for the design of a GW detector network, optimal localization methods for a given network, and electromagnetic follow-up observations.Comment: 13 pages, for Phys. Rev.

    Probing the evolution of Stark wave packets by a weak half cycle pulse

    Full text link
    We probe the dynamic evolution of a Stark wave packet in cesium using weak half-cycle pulses (HCP's). The state-selective field ionization(SSFI) spectra taken as a function of HCP delay reveal wave packet dynamics such as Kepler beats, Stark revivals and fractional revivals. A quantum-mechanical simulation explains the results as multi-mode interference induced by the HCP.Comment: 4 pages, incl. 3 figures, submitted to PR

    Critical currents, flux-creep activation energy and potential barriers for the vortex motion from the flux creep experiments

    Full text link
    We present an experimental study of thermally activated flux creep in a superconducting ring-shaped epitaxial YBCO film as well as a new way of analyzing the experimental data. The measurements were made in a wide range of temperatures between 10 and 83 K. The upper temperature limit was dictated by our experimental technique and at low temperatures we were limited by a crossover to quantum tunneling of vortices. It is shown that the experimental data can very well be described by assuming a simple thermally activated hopping of vortices or vortex bundles over potential barriers, whereby the hopping flux objects remain the same for all currents and temperatures. The new procedure of data analysis also allows to establish the current and temperature dependencies of the flux-creep activation energy U, as well as the temperature dependence of the critical current Ic, from the flux-creep rates measured at different temperatures. The variation of the activation energy with current, U(I/Ic), is then used to reconstruct the profile of the potential barriers in real space.Comment: 12 pages, 13 Postscript figures, Submitted to Physical Review

    Expression of Green Fluorescence Protein (GFP) in Zebrafish Muscle through Injection: A Gene Therapy Model

    Get PDF
    Expression of the target gene is important for gene therapy. Presently, localized transgenesis is used for gene therapy which can be achieved by a target gene expression. Here, we have reported the plasmid mediated gene therapy to zebrafish model. For this purpose, we have chosen green fluorescent protein (GFP) as a target gene because the expression can be detected easily. GFP was inserted in a plasmid vector, pQE30 to develop the vector pQE30GFP. The plasmid pQE30GFP was constructed form plasmid, pQE30 and pEGFPC2. pQE30GFP injected directly in one group of fish into the muscle where luciferase expression was noted. In another group, after injection electroporation was performed where we have also noted luciferase expression; but, electroporation cause muscle injury to the zebrafish. In our case, the expression was very strong at the site of injection in first group in compare to electroporation group and in both the cases expression was stable more than two weeks

    Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

    Get PDF
    We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be `read' out.Comment: 4 pages, 4 figure
    • …
    corecore