44 research outputs found

    A new method based on the manifold-alternative approximating for low-rank matrix completion

    No full text
    Abstract In this paper, a new method is proposed for low-rank matrix completion which is based on the least squares approximating to the known elements in the manifold formed by the singular vectors of the partial singular value decomposition alternatively. The method can achieve a reduction of the rank of the manifold by gradually reducing the number of the singular value of the thresholding and get the optimal low-rank matrix. It is proven that the manifold-alternative approximating method is convergent under some conditions. Furthermore, compared with the augmented Lagrange multiplier and the orthogonal rank-one matrix pursuit algorithms by random experiments, it is more effective as regards the CPU time and the low-rank property

    A parallel multisplitting method with self-adaptive weightings for solving H-matrix linear systems

    No full text
    Abstract In this paper, a parallel multisplitting iterative method with the self-adaptive weighting matrices is presented for the linear system of equations when the coefficient matrix is an H-matrix. The zero pattern in weighting matrices is determined in advance, while the non-zero entries of weighting matrices are determined by finding the optimal solution in a hyperplane of α points generated by the parallel multisplitting iterations. Especially, the nonnegative restriction of weighting matrices is released. The convergence theory is established for the parallel multisplitting method with self-adaptive weightings. Finally, a numerical example shows that the parallel multisplitting iterative method with the self-adaptive weighting matrices is effective

    A medium-shifted splitting iteration method for a diagonal-plus-Toeplitz linear system from spatial fractional Schrödinger equations

    No full text
    Abstract The centered difference discretization of the spatial fractional coupled nonlinear Schrödinger equations obtains a discretized linear system whose coefficient matrix is the sum of a real diagonal matrix D and a complex symmetric Toeplitz matrix T̃ which is just the symmetric real Toeplitz T plus an imaginary identity matrix iI. In this study, we present a medium-shifted splitting iteration method to solve the discretized linear system, in which the fast algorithm can be utilized to solve the Toeplitz linear system. Theoretical analysis shows that the new iteration method is convergent. Moreover, the new splitting iteration method naturally leads to a preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are tighter than those of the original coefficient matrix A. Finally, compared with the other algorithms by numerical experiments, the new method is more effective

    A new parallel splitting augmented Lagrangian-based method for a Stackelberg game

    Get PDF
    Abstract This paper addresses a novel solution scheme for a special class of variational inequality problems which can be applied to model a Stackelberg game with one leader and three or more followers. In the scheme, the leader makes his decision first and then the followers reveal their choices simultaneously based on the information of the leader’s strategy. Under mild conditions, we theoretically prove that the scheme can obtain an equilibrium. The proposed approach is applied to solve a simple game and a traffic problem. Numerical results about the performance of the new method are reported

    Some generalizations of the new SOR-like method for solving symmetric saddle-point problems

    No full text
    Abstract Saddle-point problems arise in many areas of scientific computing and engineering applications. Research on the efficient numerical methods of these problems has become a hot topic in recent years. In this paper, we propose some generalizations of the new SOR-like method based on the original method. Convergence of these methods is discussed under suitable restrictions on iteration parameters. Numerical experiments are given to show that these methods are effective and efficient

    A semi-smoothing augmented Lagrange multiplier algorithm for low-rank Toeplitz matrix completion

    No full text
    Abstract The smoothing augmented Lagrange multiplier (SALM) algorithm is a generalization of the augmented Lagrange multiplier algorithm for completing a Toeplitz matrix, which saves computational cost of the singular value decomposition (SVD) and approximates well the solution. However, the communication of numerous data is computationally demanding at each iteration step. In this paper, we propose an accelerated scheme to the SALM algorithm for the Toeplitz matrix completion (TMC), which will reduce the extra load coming from data communication under reasonable smoothing. It has resulted in a semi-smoothing augmented Lagrange multiplier (SSALM) algorithm. Meanwhile, we demonstrate the convergence theory of the new algorithm. Finally, numerical experiments show that the new algorithm is more effective/economic than the original algorithm

    A selected method for the optimal parameters of the AOR iteration

    No full text
    Abstract In this paper, we present an optimization technique to find the optimal parameters of the AOR iteration, which just needs to minimize the 2-norm of the residual vector and avoids solving the spectral radius of the iteration matrix of the SOR method. Meanwhile, numerical results are provided to indicate that the new method is more robust than the AOR method for larger intervals of the parameters ω and γ

    Manifold-Manifold Distance with Application to Face Recognition Based

    No full text
    In this paper, we address the problem of classifying image sets, each of which contains images belonging to the same class but covering large variations in, for instance, viewpoint and illumination. We innovatively formulate the problem as the computation of Manifold-Manifold Distance (MMD), i.e., calculating the distance between nonlinear manifolds each representing one image set. To compute MMD, we also propose a novel manifold learning approach, which expresses a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrating the distances between pair of subspaces respectively from one of the involved manifolds. The proposed MMD method is evaluated on the task of Face Recognition based on Image Set (FRIS). In FRIS, each known subject is enrolled with a set of facial images and modeled as a gallery manifold, while a testing subject is modeled as a probe manifold, which is then matched against all the gallery manifolds by MMD. Identification is achieved by seeking the minimum MMD. Experimental results on two public face databases, Honda/UCSD and CMU MoBo, demonstrate that the proposed MMD method outperforms the competing methods. 1

    Maximal linear embedding for dimensionality reduction

    No full text
    Over the past few decades, dimensionality reduction has been widely exploited in computer vision and pattern analysis. This paper proposes a simple but effective nonlinear dimensionality reduction algorithm, named Maximal Linear Embedding (MLE). MLE learns a parametric mapping to recover a single global low-dimensional coordinate space and yields an isometric embedding for the manifold. Inspired by geometric intuition, we introduce a reasonable definition of locally linear patch, Maximal Linear Patch (MLP), which seeks to maximize the local neighborhood in which linearity holds. The input data are first decomposed into a collection of local linear models, each depicting an MLP. These local models are then aligned into a global coordinate space, which is achieved by applying MDS to some randomly selected landmarks. The proposed alignment method, called Landmarks-based Global Alignment (LGA), can efficiently produce a closed-form solution with no risk of local optima. It just involves some small-scale eigenvalue problems, while most previous aligning techniques employ time-consuming iterative optimization. Compared with traditional methods such as ISOMAP and LLE, our MLE yields an explicit modeling of the intrinsic variation modes of the observation data. Extensive experiments on both synthetic and real data indicate the effectivity and efficiency of the proposed algorithm
    corecore