4,079 research outputs found
Random Logic Programs: Linear Model
This paper proposes a model, the linear model, for randomly generating logic
programs with low density of rules and investigates statistical properties of
such random logic programs. It is mathematically shown that the average number
of answer sets for a random program converges to a constant when the number of
atoms approaches infinity. Several experimental results are also reported,
which justify the suitability of the linear model. It is also experimentally
shown that, under this model, the size distribution of answer sets for random
programs tends to a normal distribution when the number of atoms is
sufficiently large.Comment: 33 pages. To appear in: Theory and Practice of Logic Programmin
Preferential Multi-Context Systems
Multi-context systems (MCS) presented by Brewka and Eiter can be considered
as a promising way to interlink decentralized and heterogeneous knowledge
contexts. In this paper, we propose preferential multi-context systems (PMCS),
which provide a framework for incorporating a total preorder relation over
contexts in a multi-context system. In a given PMCS, its contexts are divided
into several parts according to the total preorder relation over them,
moreover, only information flows from a context to ones of the same part or
less preferred parts are allowed to occur. As such, the first preferred
parts of an PMCS always fully capture the information exchange between contexts
of these parts, and then compose another meaningful PMCS, termed the
-section of that PMCS. We generalize the equilibrium semantics for an MCS to
the (maximal) -equilibrium which represents belief states at least
acceptable for the -section of an PMCS. We also investigate inconsistency
analysis in PMCS and related computational complexity issues
Toward Guaranteed Illumination Models for Non-Convex Objects
Illumination variation remains a central challenge in object detection and
recognition. Existing analyses of illumination variation typically pertain to
convex, Lambertian objects, and guarantee quality of approximation in an
average case sense. We show that it is possible to build V(vertex)-description
convex cone models with worst-case performance guarantees, for non-convex
Lambertian objects. Namely, a natural verification test based on the angle to
the constructed cone guarantees to accept any image which is sufficiently
well-approximated by an image of the object under some admissible lighting
condition, and guarantees to reject any image that does not have a sufficiently
good approximation. The cone models are generated by sampling point
illuminations with sufficient density, which follows from a new perturbation
bound for point images in the Lambertian model. As the number of point images
required for guaranteed verification may be large, we introduce a new
formulation for cone preserving dimensionality reduction, which leverages tools
from sparse and low-rank decomposition to reduce the complexity, while
controlling the approximation error with respect to the original cone
- …