736 research outputs found

    Theory of the tunneling resonances of the bilayer electron systems in strong magnetic field

    Full text link
    We develop a theory for the anomalous interlayer conductance peaks observed in bilayer electron systems at nu=1. Our model shows the that the size of the peak at zero bias decreases rapidly with increasing in-plane magnetic field, but its location is unchanged. The I-V characteristic is linear at small voltages, in agreement with experimental observations. In addition we make quantitative predictions for how the inter-layer conductance peaks vary in position with in-plane magnetic field at high voltages. Finally, we predict novel bi-stable behavior at intermediate voltages.Comment: 5 pages, 2 figure

    Theory of the Quantum Hall Smectic Phase II: Microscopic Theory

    Full text link
    We present a microscopic derivation of the hydrodynamic theory of the Quantum Hall smectic or stripe phase of a two-dimensional electron gas in a large magnetic field. The effective action of the low energy is derived here from a microscopic picture by integrating out high energy excitations with a scale of the order the cyclotron energy.The remaining low-energy theory can be expressed in terms of two canonically conjugate sets of degrees of freedom: the displacement field, that describes the fluctuations of the shapes of the stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and improved Introduction. Final version as it will appear in Physical Review

    Stripes in Quantum Hall Double Layer Systems

    Full text link
    We present results of a study of double layer quantum Hall systems in which each layer has a high-index Landau level that is half-filled. Hartree-Fock calculations indicate that, above a critical layer separation, the system becomes unstable to the formation of a unidirectional coherent charge density wave (UCCDW), which is related to stripe states in single layer systems. The UCCDW state supports a quantized Hall effect when there is tunneling between layers, and is {\it always} stable against formation of an isotropic Wigner crystal for Landau indices N1N \ge 1. The state does become unstable to the formation of modulations within the stripes at large enough layer separation. The UCCDW state supports low-energy modes associated with interlayer coherence. The coherence allows the formation of charged soliton excitations, which become gapless in the limit of vanishing tunneling. We argue that this may result in a novel {\it ``critical Hall state''}, characterized by a power law IVI-V in tunneling experiments.Comment: 10 pages, 8 figures include

    Spontaneous Coherence and Collective Modes in Double-Layer Quantum Dot Systems

    Full text link
    We study the ground state and the collective excitations of parabolically-confined double-layer quantum dot systems in a strong magnetic field. We identify parameter regimes where electrons form maximum density droplet states, quantum-dot analogs of the incompressible states of the bulk integer quantum Hall effect. In these regimes the Hartree-Fock approximation and the time-dependent Hartree-Fock approximations can be used to describe the ground state and collective excitations respectively. We comment on the relationship between edge excitations of dots and edge magneto-plasmon excitations of bulk double-layer systems.Comment: 20 pages (figures included) and also available at http://fangio.magnet.fsu.edu/~jhu/Paper/qdot_cond.ps, replaced to fix figure

    Dynamics of quantum Hall stripes in double-quantum-well systems

    Full text link
    The collective modes of stripes in double layer quantum Hall systems are computed using the time-dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the other a pseudospin-wave associated with a broken U(1) symmetry. For large layer separations the modes disperse weakly for wavevectors perpendicular to the stripe orientation, indicating the system becomes akin to an array of weakly coupled one-dimensional XY systems. At higher wavevectors the collective modes develop a roton minimum associated with a transition out of the coherent state with further increasing layer separation. A spin wave model of the system is developed, and it is shown that the collective modes may be described as those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure

    Bias-voltage induced phase-transition in bilayer quantum Hall ferromagnets

    Full text link
    We consider bilayer quantum Hall systems at total filling factor ν=1\nu=1 in presence of a bias voltage Δv\Delta_v which leads to different filling factors in each layer. We use auxiliary field functional integral approach to study mean-field solutions and collective excitations around them. We find that at large layer separation, the collective excitations soften at a finite wave vector leading to the collapse of quasiparticle gap. Our calculations predict that as the bias voltage is increased, bilayer systems undergo a phase transition from a compressible state to a ν=1\nu=1 phase-coherent state {\it with charge imbalance}. We present simple analytical expressions for bias-dependent renormalized charge imbalance and pseudospin stiffness which are sensitive to the softening of collective modes.Comment: 12 pages, 5 figures. Minor changes, one reference adde

    Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling

    Full text link
    The electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling are studied by means of a pseudospin-texture effective theory and an algebraic framework of the single-mode approximation, with emphasis on clarifying the nature of the low-lying neutral collective mode responsible for interlayer tunneling phenomena. A long-wavelength effective theory, consisting of the collective mode as well as the cyclotron modes, is constructed. It is seen explicitly from the electromagnetic response that gauge invariance is kept exact, this implying, in particular, the absence of the Meissner effect in bilayer systems. Special emphasis is placed on exploring the advantage of looking into quantum Hall systems through their response; in particular, subtleties inherent to the standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.

    Variable-range hopping in quasi-one-dimensional electron crystals

    Full text link
    We study the effect of impurities on the ground state and the low-temperature dc transport in a 1D chain and quasi-1D systems of many parallel chains. We assume that strong interactions impose a short-range periodicicity of the electron positions. The long-range order of such an electron crystal (or equivalently, a 4kF4 k_F charge-density wave) is destroyed by impurities. The 3D array of chains behaves differently at large and at small impurity concentrations NN. At large NN, impurities divide the chains into metallic rods. The low-temperature conductivity is due to the variable-range hopping of electrons between the rods. It obeys the Efros-Shklovskii (ES) law and increases exponentially as NN decreases. When NN is small, the metallic-rod picture of the ground state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy charge excitations. In the bulk the charge excitations are gapped and the electron crystal is pinned collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in energy Coulomb gap and a new law of the variable-range hopping lnσ(T1/T)2/5-\ln\sigma \sim (T_1 / T)^{2/5}. T1T_1 remains constant over a finite range of impurity concentrations. At smaller NN the 2/5-law is replaced by the Mott law, where the conductivity gets suppressed as NN goes down. Thus, the overall dependence of σ\sigma on NN is nonmonotonic. In 1D, the granular-rod picture and the ES apply at all NN. The conductivity decreases exponentially with NN. Our theory provides a qualitative explanation for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For the full abstract, see the manuscript (v2) several changes in presentation per referee's comments. No change in result

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR
    corecore