25,386 research outputs found

    Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors

    Get PDF
    We report for the first time general geometrical expressions for the angular resolution of an arbitrary network of interferometric gravitational-wave (GW) detectors when the arrival-time of a GW is unknown. We show explicitly elements that decide the angular resolution of a GW detector network. In particular, we show the dependence of the angular resolution on areas formed by projections of pairs of detectors and how they are weighted by sensitivities of individual detectors. Numerical simulations are used to demonstrate the capabilities of the current GW detector network. We confirm that the angular resolution is poor along the plane formed by current LIGO-Virgo detectors. A factor of a few to more than ten fold improvement of the angular resolution can be achieved if the proposed new GW detectors LCGT or AIGO are added to the network. We also discuss the implications of our results for the design of a GW detector network, optimal localization methods for a given network, and electromagnetic follow-up observations.Comment: 13 pages, for Phys. Rev.

    Classification of Gapped Symmetric Phases in 1D Spin Systems

    Full text link
    Quantum many-body systems divide into a variety of phases with very different physical properties. The question of what kind of phases exist and how to identify them seems hard especially for strongly interacting systems. Here we make an attempt to answer this question for gapped interacting quantum spin systems whose ground states are short-range correlated. Based on the local unitary equivalence relation between short-range correlated states in the same phase, we classify possible quantum phases for 1D matrix product states, which represent well the class of 1D gapped ground states. We find that in the absence of any symmetry all states are equivalent to trivial product states, which means that there is no topological order in 1D. However, if certain symmetry is required, many phases exist with different symmetry protected topological orders. The symmetric local unitary equivalence relation also allows us to obtain some simple results for quantum phases in higher dimensions when some symmetries are present.Comment: 21 pages, 7 figures. Version 2, classification for parity and translation symmetry update

    Artificial Gauge Field and Quantum Spin Hall States in a Conventional Two-dimensional Electron Gas

    Full text link
    Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/Inx_{x}Ga1x_{1-x}As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band inversions between the neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.Comment: 9 pages and 4 figure

    QHE of Bilayer Systems in the Presence of Tunneling -- ν=1/q\nu=1/q case --

    Full text link
    Transport properties of bilayer quantum Hall systems at ν=1/q\nu=1/q, where qq is an odd integer, are investigated. The edge theory is used for the investigation, since tunneling between the two layers is assumed to occur on the edge of the sample because of the bulk incompressibility. It is shown that in the case of the independent Laughlin state tunneling is irrelevant when ν<1/2\nu<1/2 in the low temperature and long wave length limit. The temperature dependence of two-terminal conductance of the system in which only one of the two layers is contacted with electrode is discussed.Comment: 5 page

    Theory of pattern-formation of metallic microparticles in poorly conducting liquid

    Full text link
    We develop continuum theory of self-assembly and pattern formation in metallic microparticles immersed in a poorly conducting liquid in DC electric field. The theory is formulated in terms of two conservation laws for the densities of immobile particles (precipitate) and bouncing particles (gas) coupled to the Navier-Stokes equation for the liquid. This theory successfully reproduces correct topology of the phase diagram and primary patterns observed in the experiment [Sapozhnikov et al, Phys. Rev. Lett. v. 90, 114301 (2003)]: static crystals and honeycombs and dynamic pulsating rings and rotating multi-petal vortices.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
    corecore