21,773 research outputs found
Gapless Fermions and Quantum Order
Using 2D quantum spin-1/2 model as a concrete example, we studied the
relation between gapless fermionic excitations (spinons) and quantum orders in
some spin liquid states. Using winding number, we find the projective symmetry
group that characterizes the quantum order directly determines the pattern of
Fermi points in the Brillouin zone. Thus quantum orders provide an origin for
gapless fermionic excitations.Comment: 23 pages. LaTeX. Homepage http://dao.mit.edu/~we
Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations
An algebraic structure related to discrete zero curvature equations is
established. It is used to give an approach for generating master symmetries of
first degree for systems of discrete evolution equations and an answer to why
there exist such master symmetries. The key of the theory is to generate
nonisospectral flows from the discrete spectral
problem associated with a given system of discrete evolution equations. Three
examples are given.Comment: 24 pages, LaTex, revise
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows
In this paper, an improved three-dimensional color-gradient lattice Boltzmann
(LB) model is proposed for simulating immiscible multiphase flows. Compared
with the previous three-dimensional color-gradient LB models, which suffer from
the lack of Galilean invariance and considerable numerical errors in many cases
owing to the error terms in the recovered macroscopic equations, the present
model eliminates the error terms and therefore improves the numerical accuracy
and enhances the Galilean invariance. To validate the proposed model, numerical
simulation are performed. First, the test of a moving droplet in a uniform flow
field is employed to verify the Galilean invariance of the improved model.
Subsequently, numerical simulations are carried out for the layered two-phase
flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using
the improved model, the numerical accuracy can be significantly improved in
comparison with the color-gradient LB model without the improvements. Finally,
the capability of the improved color-gradient LB model for simulating dynamic
multiphase flows at a relatively large density ratio is demonstrated via the
simulation of droplet impact on a solid surface.Comment: 9 Figure
A scheme for demonstration of fractional statistics of anyons in an exactly solvable model
We propose a scheme to demonstrate fractional statistics of anyons in an
exactly solvable lattice model proposed by Kitaev that involves four-body
interactions. The required many-body ground state, as well as the anyon
excitations and their braiding operations, can be conveniently realized through
\textit{dynamic}laser manipulation of cold atoms in an optical lattice. Due to
the perfect localization of anyons in this model, we show that a quantum
circuit with only six qubits is enough for demonstration of the basic braiding
statistics of anyons. This opens up the immediate possibility of
proof-of-principle experiments with trapped ions, photons, or nuclear magnetic
resonance systems.Comment: 4 pages, 3 figure
Superconductivity in Ti-doped Iron-Arsenide Compound Sr4Cr0.8Ti1.2O6Fe2As2
Superconductivity was achieved in Ti-doped iron-arsenide compound
Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The x-ray diffraction
measurement shows that this material has a layered structure with the space
group of \emph{P4/nmm}, and with the lattice constants a = b = 3.9003 A and c =
15.8376 A. Clear diamagnetic signals in ac susceptibility data and
zero-resistance in resistivity data were detected at about 6 K, confirming the
occurrence of bulk superconductivity. Meanwhile we observed a superconducting
transition in the resistive data with the onset transition temperature at 29.2
K, which may be induced by the nonuniform distribution of the Cr/Ti content in
the FeAs-42622 phase, or due to some other minority phase.Comment: 3 pages, 3 figure
- …