4 research outputs found

    Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery

    No full text
    Layered double hydroxide nanoparticles (LDHs) have shown the excellent capability and good adjuvant function as a nanocarrier for protein antigen delivery to enhance the immune response. Furthermore, LDHs have good biocompatibility and low cytotoxicity. However, their oral vaccine delivery efficiency is limited due to acidic/enzyme degradation in the stomach and low bioavailability in the small intestine. To overcome these challenges, alginate-chitosan coated LDHs nanocomposites (ALG-CHT-LDH) have been developed and used as a carrier for oral protein vaccine delivery. The physicochemical properties of ALG-CHT-LDH have been determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and ultraviolet visible (UV-Vis) spectroscopy. Protein release properties of LDHs with/without polymer coating have been investigated at various pHs. The protein release profile of ALG-CHT-LDH nanocomposites indicated that ALG-CHT coating could partially protect protein release at the acidic condition (pH 1.2). The cellular uptake efficiency of protein delivered by ALG-CHT-LDH for the intestine cells and macrophages were studied. After alginate layer falls from ALG-CHT-LDH nanocomposite, flow cytometry analysis (FACS) data suggest that chitosan-coated LDHs significantly enhance the internalization of proteins at the Caco2 and macrophage cells

    A single-cell transcriptomic atlas tracking the neural basis of division of labour in an ant superorganism

    No full text
    Ant colonies with permanent division of labour between castes and highly distinct roles of the sexes have been conceptualized to be superorganisms, but the cellular and molecular mechanisms that mediate caste/sex-specific behavioural specialization have remained obscure. Here we characterized the brain cell repertoire of queens, gynes (virgin queens), workers and males of Monomorium pharaonis by obtaining 206,367 single-nucleus transcriptomes. In contrast to Drosophila, the mushroom body Kenyon cells are abundant in ants and display a high diversity with most subtypes being enriched in worker brains, the evolutionarily derived caste. Male brains are as specialized as worker brains but with opposite trends in cell composition with higher abundances of all optic lobe neuronal subtypes, while the composition of gyne and queen brains remained generalized, reminiscent of solitary ancestors. Role differentiation from virgin gynes to inseminated queens induces abundance changes in roughly 35% of cell types, indicating active neurogenesis and/or programmed cell death during this transition. We also identified insemination-induced cell changes probably associated with the longevity and fecundity of the reproductive caste, including increases of ensheathing glia and a population of dopamine-regulated Dh31-expressing neurons. We conclude that permanent caste differentiation and extreme sex-differentiation induced major changes in the neural circuitry of ants
    corecore