106 research outputs found

    Affine Frequency Division Multiplexing With Index Modulation

    Full text link
    Affine frequency division multiplexing (AFDM) is a new multicarrier technique based on chirp signals tailored for high-mobility communications, which can achieve full diversity. In this paper, we propose an index modulation (IM) scheme based on the framework of AFDM systems, named AFDM-IM. In the proposed AFDM-IM scheme, the information bits are carried by the activation state of the subsymbols in discrete affine Fourier (DAF) domain in addition to the conventional constellation symbols. To efficiently perform IM, we divide the subsymbols in DAF domain into several groups and consider both the localized and distributed strategies. An asymptotically tight upper bound on the average bit error rate (BER) of the maximum-likelihood detection in the existence of channel estimation errors is derived in closed-form. Computer simulations are carried out to evaluate the performance of the proposed AFDM-IM scheme, whose results corroborate its superiority over the benchmark schemes in the linear time-varying channels. We also evaluate the BER performance of the index and modulated bits for the AFDM-IM scheme with and without satisfying the full diversity condition of AFDM. The results show that the index bits have a stronger diversity protection than the modulated bits even when the full diversity condition of AFDM is not satisfied

    Analysis of Molecule Harvesting by Heterogeneous Receptors on MC Transmitters

    Full text link
    This paper designs a molecule harvesting transmitter (TX) model, where the surface of a spherical TX is covered by heterogeneous receptors with different sizes and arbitrary locations. If molecules hit any receptor, they are absorbed by the TX immediately. Within the TX, molecules are stored in vesicles that are continuously generated and released by the TX via the membrane fusion process. Considering a transparent receiver (RX) and molecular degradation during the propagation from the TX to the RX, we derive the molecule release rate and the fraction of molecules absorbed by the TX as well as the received signal at the RX. Notably, this analytical result is applicable for different numbers, sizes, and locations of receptors, and its accuracy is verified via particle-based simulations. Numerical results show that different vesicle generation rates result in the same number of molecules absorbed by the TX, but different peak received signals at the RX.Comment: 7 pages, 4 figures. This work has been accepted by IEEE GLOBECOM 2023. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Accelerating Split Federated Learning over Wireless Communication Networks

    Full text link
    The development of artificial intelligence (AI) provides opportunities for the promotion of deep neural network (DNN)-based applications. However, the large amount of parameters and computational complexity of DNN makes it difficult to deploy it on edge devices which are resource-constrained. An efficient method to address this challenge is model partition/splitting, in which DNN is divided into two parts which are deployed on device and server respectively for co-training or co-inference. In this paper, we consider a split federated learning (SFL) framework that combines the parallel model training mechanism of federated learning (FL) and the model splitting structure of split learning (SL). We consider a practical scenario of heterogeneous devices with individual split points of DNN. We formulate a joint problem of split point selection and bandwidth allocation to minimize the system latency. By using alternating optimization, we decompose the problem into two sub-problems and solve them optimally. Experiment results demonstrate the superiority of our work in latency reduction and accuracy improvement
    • …
    corecore