10,834 research outputs found

    Quasi-two-body decays Bβ†’DKβˆ—(892)β†’DKΟ€B \to D K^*(892) \to D K \pi in the perturbative QCD approach

    Full text link
    We study the quasi-two-body decays Bβ†’DKβˆ—(892)β†’DKΟ€B\to D K^*(892) \to D K\pi by employing the perturbative QCD approach. The two-meson distribution amplitudes \Phi_{K\pi}^{\text{P-wave}} are adopted to describe the final state interactions of the kaon-pion pair in the resonance region. The resonance line shape for the PP-wave KΟ€K\pi component Kβˆ—(892)K^*(892) in the time-like form factor FKΟ€(s)F_{K\pi}(s) is parameterized by the relativistic Breit-Wigner function. For most considered decay modes, the theoretical predictions for their branching ratios are consistent with currently available experimental measurements within errors. We also disscuss some ratios of the branching fractions of the concerned decay processes. More precise data from LHCb and Belle-II are expected to test our predictions.Comment: 10 pages, 3 figures and 2 tables.To be published in EPJ

    Effects of Neutron-Proton Short-Range Correlation on the Equation of State of Dense Neutron-Rich Nucleonic Matter

    Full text link
    The strongly isospin-dependent tensor force leads to short-range correlations (SRC) between neutron-proton (deuteron-like) pairs much stronger than those between proton-proton and neutron-neutron pairs. As a result of the short-range correlations, the single-nucleon momentum distribution develops a high-momentum tail above the Fermi surface. Because of the strongly isospin-dependent short-range correlations, in neutron-rich matter a higher fraction of protons will be depleted from its Fermi sea and populate above the Fermi surface compared to neutrons. This isospin-dependent nucleon momentum distribution may have effects on: (1) nucleon spectroscopic factors of rare isotopes, (2) the equation of state especially the density dependence of nuclear symmetry energy, (3) the coexistence of a proton-skin in momentum space and a neutron-skin in coordinate space (i.e., protons move much faster than neutrons near the surface of heavy nuclei). In this talk, we discuss these features and their possible experimental manifestations. As an example, SRC effects on the nuclear symmetry energy are discussed in detail using a modified Gogny-Hartree-Fock (GHF) energy density functional (EDF) encapsulating the SRC-induced high momentum tail (HMT) in the single-nucleon momentum distribution

    Electron-nuclear entanglement in the cold lithium gas

    Full text link
    We study the ground-state entanglement and thermal entanglement in the hyperfine interaction of the lithium atom. We give the relationship between the entanglement and both temperature and external magnetic fields.Comment: 7 pages, 3 figure
    • …
    corecore