2,910 research outputs found

    In praise of ambidexterity: How a continuum of handedness predicts social adjustment

    Get PDF
    This paper estimates the relationship between handedness and social adjustment. In addition to binary measures of hand preference, we also use a continuous measure of hand skill. Outcomes at ages 7, 11 and 16 are studied. Using a semi-parametric estimator it is shown that non-righthandedness (as hand-preference) is associated with poorer social adjustment but this effect disappears as the individuals age. The continuous measure of hand skill has a non-monotonic effect on social adjustment with poorer social adjustment at the extreme values of the continuum. Poorer social adjustment in childhood has been shown to predict poorer socio-economic outcomes later in life.handedness, non-cognitive ability, delinquency, laterality

    In praise of ambidexterity: how a continuum of handedness predicts social adjustment

    Get PDF
    This paper estimates the relationship between handedness and social adjustment. In addition to binary measures of hand preference, we also use a continuous measure of hand skill. Outcomes at ages 7, 11 and 16 are studied. Using a semi-parametric estimator it is shown that non-right-handedness (as hand-preference) is associated with poorer social adjustment but this effect disappears as the individuals age. The continuous measure of hand skill has a non-monotonic effect on social adjustment with poorer social adjustment at the extreme values of the continuum. Poorer social adjustment in childhood has been shown to predict poorer socio-economic outcomes later in life.

    Event-Related Potentials Reveal Differential Brain Regions Implicated in Discounting in Two Tasks

    Get PDF
    The way people make decisions about future benefits termed discounting - has important implications for both financial planning and health behaviour. Several theories assume that, when delaying gratification, the lower weight given to future benefits (the discount rate) declines exponentially. However there is considerable evidence that it declines hyperbolically with the rate of discount being proportionate to the delay distance. There is relatively little evidence as to whether neural areas mediating timedependent discounting processes differ according to the nature of the task. The present study investigates the potential neurological mechanisms underpinning domain-specific discounting processes. We present high-density event-related potentials (ERPs) data from a task in which participants were asked to make decisions about financial rewards or their health over short and long time-horizons. Participants (n=17) made a button-press response to their preference for an immediate or delayed gain (in the case of finance) or loss (in the case of health), with the discrepancy in the size of benefits/losses varying between alternatives. Waveform components elicited during the task were similar for both domains and included posterior N1, frontal P2 and posterior P3 components. We provide source dipole evidence that differential brain activation does occur across domains with results suggesting the possible involvement of the right cingulate gyrus and left claustrum for the health domain and the left medial and right superior frontal gyri for the finance domain. However, little evidence for differential activation across time horizons is found.

    Event-related Potentials reveal differential Brain Regions implicated in Discounting in Two Tasks

    Get PDF
    The way people make decisions about future benefits – termed discounting - has important implications for both financial planning and health behaviour. Several theories assume that, when delaying gratification, the lower weight given to future benefits (the discount rate) declines exponentially. However there is considerable evidence that it declines hyperbolically with the rate of discount being proportionate to the delay distance. There is relatively little evidence as to whether neural areas mediating time- dependent discounting processes differ according to the nature of the task. The present study investigates the potential neurological mechanisms underpinning domain-specific discounting processes. We present high-density event-related potentials (ERPs) data from a task in which participants were asked to make decisions about financial rewards or their health over short and long time-horizons. Participants (n=17) made a button-press response to their preference for an immediate or delayed gain (in the case of finance) or loss (in the case of health), with the discrepancy in the size of benefits/losses varying between alternatives. Waveform components elicited during the task were similar for both domains and included posterior N1, frontal P2 and posterior P3 components. We provide source dipole evidence that differential brain activation does occur across domains with results suggesting the possible involvement of the right cingulate gyrus and left claustrum for the health domain and the left medial and right superior frontal gyri for the finance domain. However, little evidence for differential activation across time horizons is found.Decision Making, Domain-Specific Discounting, Event-Related Potentials

    Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems

    Get PDF
    BACKGROUND: Employing genomic DNA clones to characterise gene attributes has several advantages over the use of cDNA clones, including the presence of native transcription and translation regulatory sequences as well as a representation of the complete repertoire of potential splice variants encoded by the gene. However, working with genomic DNA clones has traditionally been tedious due to their large size relative to cDNA clones and the presence, absence or position of particular restriction enzyme sites that may complicate conventional in vitro cloning procedures. RESULTS: To enable efficient cloning and manipulation of genomic DNA fragments for the purposes of gene expression and reporter-gene studies we have combined aspects of the Gateway system and a bacteriophage-based homologous recombination (i.e. recombineering) system. To apply the method for characterising plant genes we developed novel Gateway and plant transformation vectors that are of small size and incorporate selectable markers which enable efficient identification of recombinant clones. We demonstrate that the genomic coding region of a gene can be directly cloned into a Gateway Entry vector by recombineering enabling its subsequent transfer to Gateway Expression vectors. We also demonstrate how the coding and regulatory regions of a gene can be directly cloned into a plant transformation vector by recombineering. This construct was then rapidly converted into a novel Gateway Expression vector incorporating cognate 5' and 3' regulatory regions by using recombineering to replace the intervening coding region with the Gateway Destination cassette. Such expression vectors can be applied to characterise gene regulatory regions through development of reporter-gene fusions, using the Gateway Entry clones of GUS and GFP described here, or for ectopic expression of a coding region cloned into a Gateway Entry vector. We exemplify the utility of this approach with the Arabidopsis PAP85 gene and demonstrate that the expression profile of a PAP85::GUS transgene highly corresponds with native PAP85 expression. CONCLUSION: We describe a novel combination of the favourable attributes of the Gateway and recombineering systems to enable efficient cloning and manipulation of genomic DNA clones for more effective characterisation of gene function. Although the system and plasmid vectors described here were developed for applications in plants, the general approach is broadly applicable to gene characterisation studies in many biological systems

    Toward Trustworthy Neural Program Synthesis

    Full text link
    We develop an approach to estimate the probability that a program sampled from a large language model is correct. Given a natural language description of a programming problem, our method samples both candidate programs as well as candidate predicates specifying how the program should behave. This allows learning a model that forms a well-calibrated probabilistic prediction of program correctness. Our system also infers which predicates are useful to explain the behavior of the generated code, and humans preferred these in a human study over raw language model outputs. Our method is simple, easy to implement, and maintains state of the art generation accuracy results.Comment: 9 pages, 8 figure

    Detection of Diatomic Carbon in 2I/Borisov

    Get PDF
    2I/Borisov is the first-ever observed interstellar comet (and the second detected interstellar object (ISO)). It was discovered on 2019 August 30 and has a heliocentric orbital eccentricity of ~3.35, corresponding to a hyperbolic orbit that is unbound to the Sun. Given that it is an ISO, it is of interest to compare its properties—such as composition and activity—with the comets in our solar system. This study reports low-resolution optical spectra of 2I/Borisov. The spectra were obtained by the MDM Observatory Hiltner 2.4 m telescope/Ohio State Multi-Object Spectrograph (on 2019 October 31.5 and November 4.5, UT). The wavelength coverage spanned from 3700 to 9200 Å. The dust continuum reflectance spectra of 2I/Borisov show that the spectral slope is steeper in the blue end of the spectrum (compared to the red). The spectra of 2I/Borisov clearly show CN emission at 3880 Å, as well as C2 emission at both 4750 and 5150 Å. Using a Haser model to covert the observed fluxes into estimates for the molecular production rates, we find Q(CN) = 2.4 ± 0.2 × 10ÂČ⁎ s⁻Âč, and Q(C₂) = (5.5 ± 0.4) × 10ÂČÂł s⁻Âč at the heliocentric distance of 2.145 au. Our Q(CN) estimate is consistent with contemporaneous observations, and the Q(C₂) estimate is generally below the upper limits of previous studies. We derived the ratio Q(C₂)/Q(CN) = 0.2 ± 0.1, which indicates that 2I/Borisov is depleted in carbon-chain species, but is not empty. This feature is not rare for the comets in our solar system, especially in the class of Jupiter-family comets
    • 

    corecore