29,159 research outputs found
Continuous topological phase transitions between clean quantum Hall states
Continuous transitions between states with the {\em same} symmetry but
different topological orders are studied. Clean quantum Hall (QH) liquids with
neutral quasiparticles are shown to have such transitions. For clean bilayer
(nnm) states, a continous transition to other QH states (including non-Abelian
states) can be driven by increasing interlayer repulsion/tunneling. The
effective theories describing the critical points at some transitions are
derived.Comment: 4 pages, RevTeX, 2 eps figure
Optimal Resources for Topological 2D Stabilizer Codes: Comparative Study
We study the resources needed to construct topological 2D stabilizer codes as
a way to estimate in part their efficiency and this leads us to perform a
comparative study of surface codes and color codes. This study clarifies the
similarities and differences between these two types of stabilizer codes. We
compute the error correcting rate for surface codes and color
codes in several instances. On the torus, typical values are and
, but we find that the optimal values are and . For
planar codes, a typical value is , while we find that the optimal values
are and . In general, a color code encodes twice as much
logical qubits as a surface code does.Comment: revtex, 6 pages, 7 figure
Renormalization Group Study of Magnetic Catalysis in the 3d Gross-Neveu Model
Magnetic catalysis describes the enhancement of symmetry breaking quantum
fluctuations in chirally symmetric quantum field theories by the coupling of
fermionic degrees of freedom to a magnetic background configuration. We use the
functional renormalization group to investigate this phenomenon for interacting
Dirac fermions propagating in (2+1)-dimensional spacetime, described by the
Gross-Neveu model. We identify pointlike operators up to quartic fermionic
terms that can be generated in the renormalization group flow by the presence
of an external magnetic field. We employ the beta function for the fermionic
coupling to quantitatively analyze the field dependence of the induced spectral
gap. Within our pointlike truncation, the renormalization group flow provides a
simple picture for magnetic catalysis.Comment: 14 pages, 6 figures, typos correcte
Topological Computation without Braiding
We show that universal quantum computation can be performed within the ground
state of a topologically ordered quantum system, which is a naturally protected
quantum memory. In particular, we show how this can be achieved using brane-net
condensates in 3-colexes. The universal set of gates is implemented without
selective addressing of physical qubits and, being fully topologically
protected, it does not rely on quasiparticle excitations or their braiding.Comment: revtex4, 4 pages, 4 figure
SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms
Motivated by the recent experimental success in realizing synthetic
spin-orbit coupling in ultracold atomic systems, we consider N-component atoms
coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the
case, referred to here as "SU(3) spin-orbit-coupling," where the internal
states of three-component atoms are coupled to their momenta via a matrix
structure that involves the Gell-Mann matrices (in contrast to the Pauli
matrices in conventional SU(2) spin-orbit-coupled systems). It is shown that
the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena
and in particular we find that even a homogeneous SU(3) field on a simple
square lattice enables a topologically non-trivial state to exist, while such
SU(2) systems always have trivial topology. In deriving this result, we first
establish an exact equivalence between the Hofstadter model with a 1/N Abelian
flux per plaquette and a homogeneous SU(N) non-Abelian model. The former is
known to have a topological spectrum for N>2, which is thus inherited by the
latter. It is explicitly verified by an exact calculation for N=3, where we
develop and use a new algebraic method to calculate topological indices in the
SU(3) case. Finally, we consider a strip geometry and establish the existence
of three gapless edge states -- the hallmark feature of such an SU(3)
topological insulator.Comment: 4.2 pages, 1 figur
Competition between the BCS superconductivity and ferromagnetic spin fluctuations in MgCNi
The low temperature specific heat of the superconductor MgCNi and a
non-superconductor MgCNi is investigated in detail. An additional
contribution is observed from the data of MgCNi but absent in
MgCNi, which is demonstrated to be insensitive to the applied
magnetic field even up to 12 Tesla. A detailed discussion on its origin is then
presented. By subtracting this additional contribution, the zero field specific
heat of MgCNi can be well described by the BCS theory with the gap ratio
() determined by the previous tunneling measurements. The
conventional s-wave pairing state is further proved by the magnetic field
dependence of the specific heat at low temperatures and the behavior of the
upper critical field.Comment: To appear in Physical Review B, 6 pages, 7 figure
Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy
Scanning tunneling spectroscopic studies of (x =
0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap
superconductivity. These gaps decrease with increasing temperature and vanish
above the superconducting transition . The two-gap nature and the slightly
doping- and energy-dependent quasiparticle scattering interferences near the
wave-vectors and are consistent with
sign-changing -wave superconductivity. The excess zero-bias conductance and
the large gap-to- ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review
Letters. Contact author: Nai-Chang Yeh ([email protected]
- …