28,850 research outputs found

    Topological phases and phase transitions on the square-octagon lattice

    Full text link
    We theoretically investigate a tight binding model of fermions hopping on the square-octagon lattice which consists of a square lattice with plaquette corners themselves decorated by squares. Upon the inclusion of second neighbor spin-orbit coupling or non-Abelian gauge fields, time-reversal symmetric topological Z_2 band insulators are realized. Additional insulating and gapless phases are also realized via the non-Abelian gauge fields. Some of the phase transitions involve topological changes to the Fermi surface. The stability of the topological phases to various symmetry breaking terms is investigated via the entanglement spectrum. Our results enlarge the number of known exactly solvable models of Z_2 band insulators, and are potentially relevant to the realization and identification of topological phases in both the solid state and cold atomic gases.Comment: 12 pages, 9 figure

    Coulomb drag between helical edge states

    Full text link
    We theoretically investigate the Coulomb drag between the edge states of two quantum spin Hall systems. Using an interacting theory of the one-dimensional helical edge modes, we show that the drag vanishes at second order in the inter-edge interaction, where it is typically finite in other systems, due to the absence of backscattering within the edges. However, in the presence of a small external magnetic field the drag is finite and scales as the fourth power of the magnetic field, a behavior that sharply distinguishes it from other systems. We obtain the temperature dependence of the drag for regimes of both linear and quadratic edge dispersion in the presence of a finite field.Comment: 4 pages, 3 figure

    Landau-Zener Interference in Multilevel Superconducting Flux Qubits Driven by Large Amplitude Fields

    Full text link
    We proposed an analytical model to analyze the Landau-Zener interference in a multilevel superconducting flux qubit driven by large amplitude external fields. Our analytical results agree remarkably with those of the experiment [Nature 455, 51 (2008)]. Moreover, we studied the effect of driving-frequency and dephasing rate on the interference. The dephasing generally destroys the interference while increasing frequency rebuilds the interference at large dephasing rate. At certain driving frequency and dephasing rate, the interference shows some anomalous features as observed in recent experiments.Comment: 7 pages, 6 figure

    Diffractive dissociation including pomeron loops in zero transverse dimensions

    Full text link
    We have recently studied the QCD pomeron loop evolution equations in zero transverse dimensions [Shoshi:2005pf]. Using the techniques developed in [Shoshi:2005pf] together with the AGK cutting rules, we present a calculation of single, double and central diffractive cross sections (for large diffractive masses and large rapidity gaps) in zero transverse dimensions in which all dominant pomeron loop graphs are consistently summed. We find that the diffractive cross sections unitarise at asymptotic energies and that they are suppressed by powers of alpha_s. Our calculation is expected to expose some of the diffractive physics in hadron-hadron collisions at high energy.Comment: 14 pages, 5 figures; numerous explanations added, matches the published versio

    Evidence for the Luttigger liquid density of states in transport across the incompressible stripe at fractional filling factors

    Full text link
    We experimentally investigate transport across the incompressible stripe at the sample edge in the fractional quantum Hall effect regime at bulk filling factors ν=2/3\nu=2/3 and ν=2/5\nu=2/5. We obtain the dependence of the equilibration length, that is a phenomenological characteristics of the transport, on the voltage imbalance and the temperature, at high voltage imbalances. These dependencies are found to be of the power-law form, which is a strong evidence for the Luttigger liquid density of states.Comment: 4 pages, to appear in EP

    Gapless Fermions and Quantum Order

    Full text link
    Using 2D quantum spin-1/2 model as a concrete example, we studied the relation between gapless fermionic excitations (spinons) and quantum orders in some spin liquid states. Using winding number, we find the projective symmetry group that characterizes the quantum order directly determines the pattern of Fermi points in the Brillouin zone. Thus quantum orders provide an origin for gapless fermionic excitations.Comment: 23 pages. LaTeX. Homepage http://dao.mit.edu/~we

    Quantum state transmission in a cavity array via two-photon exchange

    Full text link
    The dynamical behavior of a coupled cavity array is investigated when each cavity contains a three-level atom. For the uniform and staggered intercavity hopping, the whole system Hamiltonian can be analytically diagonalized in the subspace of single-atom excitation. The quantum state transfer along the cavities is analyzed in detail for distinct regimes of parameters, and some interesting phenomena including binary transmission, selective localization of the excitation population are revealed. We demonstrate that the uniform coupling is more suitable for the quantum state transfer. It is shown that the initial state of polariton located in the first cavity is crucial to the transmission fidelity, and the local entanglement depresses the state transfer probability. Exploiting the metastable state, the distance of the quantum state transfer can be much longer than that of Jaynes-Cummings-Hubbard model. A higher transmission probability and longer distance can be achieved by employing a class of initial encodings and final decodings.Comment: 8 pages, 7 figures. to appear in Phys. Rev.

    Geometric phase and quantum phase transition in an inhomogeneous periodic XY spin-1/2 model

    Full text link
    The notion of geometric phase has been recently introduced to analyze the quantum phase transitions of many-body systems from the geometrical perspective. In this work, we study the geometric phase of the ground state for an inhomogeneous period-two anisotropic XY model in a transverse field. This model encompasses a group of familiar spin models as its special cases and shows a richer critical behavior. The exact solution is obtained by mapping on a fermionic system through the Jordan-Wigner transformation and constructing the relevant canonical transformation to realize the diagonalization of the Hamiltonian coupled in the kk-space. The results show that there may exist more than one quantum phase transition point at some parameter regions and these transition points correspond to the divergence or extremum properties of the Berry curvature.Comment: 6 pages, 3 figures. As a backup of a previous work and some typos in the published version are fixe

    Meson distribution amplitudes in holographic models

    Full text link
    We study the wave functions of light and heavy mesons in both hard-wall (HW) and soft-wall (SW) holographic models which use AdS/CFT correspondence. In the case of massless constituents, the asymptotic behaviors of the electromagnetic form factor, the distribution amplitudes, and the decay constants for the two models are the same, if the relation between the dilaton scale parameter and the size of meson is an inverse proportion. On the other hand, by introducing a quark mass dependence in the wave function, the differences of the distribution amplitudes between the two models are obvious. In addition, for the SW model, the dependences of the decay constants of meson on the dilaton scale parameter κ\kappa differ; especially f_{Qq}\sim \kappa^3/m_Q^2 is consistent with the prediction of the heavy quark effective theory if \kappa\sim m_Q^{1/2}. Thus the parameters of the two models are fit by the decay constants of the distinct mesons; the distribution amplitudes and the \xi-moments are calculated and compared.Comment: 30 pages, 11 figures, 2 tables, minor modifications and one short paragraph added, some references added and removed, accepted for publication in PR

    Dynamical Domain Wall Defects in 2+1 Dimensions

    Get PDF
    We study some dynamical properties of a Dirac field in 2+1 dimensions with spacetime dependent domain wall defects. We show that the Callan and Harvey mechanism applies even to the case of defects of arbitrary shape, and in a general state of motion. The resulting chiral zero modes are localized on the worldsheet of the defect, an embedded curved two dimensional manifold. The dynamics of these zero modes is governed by the corresponding induced metric and spin connection. Using known results about determinants and anomalies for fermions on surfaces embedded in higher dimensional spacetimes, we show that the chiral anomaly for this two dimensional theory is responsible for the generation of a current along the defect. We derive the general expression for such a current in terms of the geometry of the defect, and show that it may be interpreted as due to an "inertial" electric field, which can be expressed entirely in terms of the spacetime curvature of the defects. We discuss the application of this framework to fermionic systems with defects in condensed matter.Comment: 12 pages, Late
    corecore