4,903 research outputs found

    Revisiting Interval Graphs for Network Science

    Full text link
    The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The generalization is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science

    Time-resolved swarm studies in gases with emphasis on electron detachment and ion conversion

    Get PDF

    Polarization-Sensitive Optical Coherence Tomography in Cardiology

    Get PDF

    Three-body interactions on a triangular lattice

    Full text link
    We analyze the hard-core Bose-Hubbard model with both the three-body and nearest neighbor repulsions on the triangular lattice. The phase diagram is achieved by means of the semi-classical approximation and the quantum Monte Carlo simulation. For a system with only the three-body interactions, both the supersolid phase and one third solid disappear while the two thirds solid stably exists. As the thermal behavior of the bosons with nearest neighbor repulsion, the solid and the superfluid undergo the 3-state Potts and the Kosterlitz-Thouless type phase transitions, respectively. In a system with both the frustrated nearest neighbor two-body and three-body interactions, the supersolid and one third solid revive. By tuning the strength of the three-body interactions, the phase diagram is distorted, because the one-third solid and the supersolid are suppressed.Comment: 6 pages, 11 figure
    • …
    corecore