27 research outputs found

    Assessment of Urban Flood Vulnerability Using theSocial-Ecological-Technological Systems Framework in Six US cities

    Get PDF
    As urban populations continue to grow through the 21 st century, more people are projected to be at risk of exposure to climate change-induced extreme events. To investigate the complexity of urban floods, this study applied an interlinked social-ecological-technological systems (SETS) vulnerability framework by developing an urban flood vulnerability index for six US cities. Indicators were selected to reflect and illustrate exposure, sensitivity, and adaptive capacity to flooding for each of the three domains of SETS. We quantified 18 indicators and normalized them by the cities’ 500-yr floodplain area at the census block group level. Clusters of flood vulnerable areas were identified differently by each SETS domain, and some areas were vulnerable to floods in more than one domain. Results are provided to support decision-making for reducing risks to flooding, by considering social, ecological, and technological vulnerability as well as hotspots where multiple sources of vulnerability coexist. The spatially explicit urban SETS flood vulnerability framework can be transferred to other regions facing challenging urban floods and other types of environmental hazards. Mapping SETS flood vulnerability helps to reveal intersections of complex SETS interactions and inform policy-making for building more resilient cities in the face of extreme events and climate change impacts

    Challenges and Opportunities in the Hydrologic Sciences

    Get PDF
    This is the Table of Contents and Introduction of a Report published as Hornberger, G. M., E. Bernhardt, W. E. Dietrich, D. Entekhabi, G. E. Fogg, E. Foufoula-Georgiou, W. J. Gutowski, W. B. Lyons, K. W. Potter, S. W. Tyler, H. J. Vaux, C. J. Vorosmarty, C. Welty, C. A. Woodhouse, C. Zheng, Challenges and Opportunities in the Hydrologic Sciences. 2012: Water Science and Technology Board, Division on Earth and Life Studies, National Academy of Sciences, Washington, DC. 173 pp. Posted with permission.</p

    Regional Climate Variability and Patterns of Urban Development – Impacts on the Urban Water Cycle and Nutrient Export

    No full text
    An overview of the Baltimore NSF Water Sustainability and Climate project initiated in January 2011 will be presented. The goal of the project is to evaluate the interactions between urban development patterns and the hydrologic cycle and its associated nutrient cycles, within the context of regional and local climate variability. Our specific objective is to create a modeling system capable of simulating the feedback relationships that control urban water sustainability. Core elements include spatial modeling of urban development patterns and individual land use and location processes at parcel and neighborhood scales and for different policy scenarios; three-dimensional modeling of coupled surface water-groundwater and land surface-atmospheric systems at multiple scales (including consideration of the engineered water system), where development patterns are incorporated as input; and field work and modeling aimed at quantifying flow paths and fluxes of water and nitrogen in this system. The project team is evaluating linkages among (1) how human locational choices, waterbased ecosystem services, and regulatory policies affect the supply of land and patterns of development over time; (2) how the changing composition and variability of urbanizing surfaces affect local and regional climate; and (3) how patterns of development (including the engineered water system) and climate variability affect fluxes, flow paths and storage of water and nitrogen in urban areas. The Baltimore Ecosystem Study LTER (http://beslter.org) is being used as a platform to carry out the work. This capability enables us to take advantage of a 14-year database of hydrologic and chemical characterization data; high-resolution land-cover, land use, and socio-demographic information; and a high-density hydrologic observing system

    Use of a three-dimensional reactive solute transport model for evaluation of bioreactor placement in stream restoration

    No full text
    A three-dimensional groundwater flow and multispecies reactive transport model was used to strategically design placement of bioreactors in the subsurface to achieve maximum removal of nitrate along restored stream reaches. Two hypothetical stream restoration scenarios were evaluated over stream reaches of 40 and 94 m: a step-pool scenario and a channel re-meandering scenario. For the step-pool scenario, bioreactors were placed at locations where mass fluxes of groundwater and nitrate were highest. Bioreactors installed over 50% of the total channel length of a step-pool scenario (located to intercept maximum groundwater and nitrate mass flux) removed nitrate-N entering the channel at a rate of 36.5 kg N yr-1 (100 g N d-1), achieving about 65% of the removal of a whole-length bioreactor. Bioreactor placement for the re-meandering scenario was designed using a criterion of either highest nitrate mass flux or highest groundwater flux, but not both, because they did not occur together. Bioreactors installed at maximum nitrate flux locations (53% of the total channel length) on the western bank removed nitrate-N entering the channel at 62.0 kg N yr-1 (170 g N d-1), achieving 85% of nitrate-N removal of whole-length bioreactors for the re-meandering scenario. Bioreactors installed at maximum groundwater flux locations on the western bank along approximately 40% of the re-meandering channel achieved about 65% of nitrate removal of whole-length bioreactors. Placing bioreactors at maximum nitrate flux locations improved denitrification efficiency. Due to low groundwater velocities, bioreactor nitrate-N removal was found to be nitrate limited for all scenarios
    corecore