646 research outputs found

    Protecting Products That Go Hollywood [MCLE self study]

    Get PDF

    Diffusion Tensor MR Imaging

    Full text link
    This unit reviews the physical principles and methodologies involved in diffusion‐weighted imaging (DWI) and diffusion tensor imaging (DTI) for clinical applications. Diffusion‐sensitive MRI noninvasively provides insight into processes and microscopic cellular structures that alter molecular water mobility. Formalism to extend the Bloch equation to include effects of random translational motion through field gradients is reviewed. Definition of key acquisition parameters is also reviewed along with common methods to calculate and display tissue diffusion properties in a variety of image formats. Characterization of potential directional‐dependence of diffusion (i.e., anisotropy), such as that which exists in white matter, requires DTI. Diffusion tensor formalism and measurement techniques then reduce the diffusion tensor into standard anisotropy quantities that are summarized along with commonly used methods to depict directional information in an image format.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145343/1/cpmib0801.pd

    VALIDATING CONTINGENT VALUATION WITH SURVEYS OF EXPERTS

    Get PDF
    Contingent-valuation estimates for white-water boating passengers are compared with Likert ratings by river guides. The approach involves asking whether passengers and their guides ordinally rank alternative flows the same. The National Oceanic and Atmospheric Administration's Contingent Valuation Panel (1993) suggested "one might want to compare its (contingent-valuation's) outcome with that provided by a panel of experts." River guides constitute a counterfactual panel of "experts." For commercial trips, optimum flows are 34,000 cfs and 31,000 cfs for passengers and guides, and the comparable figures for private trips are 28,000 cfs and 29,000 cfs. In the NOAA Panel framework, passengers can evaluate the consequences of various river flows and translate this into contingent-valuation responses.Resource /Energy Economics and Policy,

    Reduced Interhemispheric Functional Connectivity in the Motor Cortex during Rest in Limb-Onset Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons that leads to paralysis and eventually death. There is evidence that atrophy occurs in the primary motor cortex (M1), but it is unclear how the disease affects the intrinsic connectivity of this structure. Thus, the goal of this study was to examine interhemispheric coupling of low frequency blood-oxygen-level dependent (BOLD) signal fluctuations in M1 using functional connectivity magnetic resonance imaging during rest. Because disease progression is rapid, high-functioning patients were recruited to assess neural changes in the relatively early stages of ALS. Twenty patients with limb-onset ALS participated in this study. A parceling technique was employed to segment both precentral gyri into multiple regions of interest (ROI), thus increasing sensitivity to detect changes that exist along discretely localized regions of the motor cortex. We report an overall systemic decrease in functional connectivity between right and left motor cortices in patients with limb-onset ALS. Additionally, we observed a pronounced disconnection between dorsal ROI pairs in the ALS group compared to the healthy control group. Furthermore, measures of limb functioning correlated with the connectivity data from dorsal ROI pairs in the ALS group, suggesting a symptomatic relationship with interhemispheric M1 connectivity

    Topographic analysis of individual activation patterns in medial frontal cortex in schizophrenia

    Full text link
    Individual variability in the location of neural activations poses a unique problem for neuroimaging studies employing group averaging techniques to investigate the neural bases of cognitive and emotional functions. This may be especially challenging for studies examining patient groups, which often have limited sample sizes and increased intersubject variability. In particular, medial frontal cortex (MFC) dysfunction is thought to underlie performance monitoring dysfunction among patients with schizophrenia, yet previous studies using group averaging to compare schizophrenic patients to controls have yielded conflicting results. To examine individual activations in MFC associated with two aspects of performance monitoring, interference and error processing, functional magnetic resonance imaging data were acquired while 17 patients with schizophrenia and 21 healthy controls (HCs) performed an event-related version of the multisource interference task. Comparisons of averaged data revealed few differences between the groups. By contrast, topographic analysis of individual activations for errors showed that control subjects exhibited activations spanning across both posterior and anterior regions of MFC while patients primarily activated posterior MFC, possibly reflecting an impaired emotional response to errors in schizophrenia. This discrepancy between topographic and group-averaged results may be due to the significant dispersion among individual activations, particularly in HCs, highlighting the importance of considering intersubject variability when interpreting the medial frontal response to error commission. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63054/1/20657_ftp.pd
    • 

    corecore