7,723 research outputs found

    GALEX ultraviolet observations of stellar variability in the Hyades and Pleiades clusters

    Full text link
    We present GALEX near ultraviolet (NUV:1750 - 2750A) and far ultraviolet (FUV: 1350 - 1750A) imaging observations of two 1.2 degree diameter fields in the Hyades and Pleiades open clusters in order to detect possible UV variability of the member stars. We have performed a detailed software search for short-term UV flux variability during these observations of the approx 400 sources detected in each of the Hyades and Pleiades fields to identify flare-like (dMe) stellar objects. This search resulted in the detection of 16 UV variable sources, of which 13 can be directly associated with probable M-type stars. The other UV sources are G-type stars and one newly discovered RR Lyrae star, USNOB1.0 1069-0046050, of period 0.624 day and distance 4.5-7.0 kpc. Light curves of photon flux versus time are shown for 7 flare events recorded on six probable dMe stars. UV energies for these flares span the range 2E27 to 5E29 erg, with a corresponding NUV variability change of 1.82 mag. Only one of these flare events (on the star Cl* Melotte 25 LH129) can definitely be associated with an origin on a member the Hyades cluster itself. Finally, many of our M-type candidates show long periods of enhanced UV activity but without the associated rapid increase in flux that is normally associated with a flare event. However, the total UV energy output during such periods of increased activity is greater than that of many short-term UV flares. These intervals of enhanced low-level UV activity concur with the idea that, even in quiescence, the UV emission from dMe stars may be related to a superposition of many small flare events possessing a wide range of energies.Comment: PASP Submitte

    Weighing harms, benefits, and alternatives for a young man with a recent flare of ulcerative colitis

    Get PDF
    A critical appraisal and clinical application of Sandborn WJ, Su C, Sands B, et al. Tofacitinib as Induction and Maintenance Therapy for Ulcerative Colitis. N Engl J Med. 2017 May 4;376(18):1723-1736. doi: 10.1056/NEJMoa160691

    Class Actions under New Rule 23 and Federal Statutes of Limitation: A Study of Conflicting Rationale

    Get PDF

    Particles in RSOS paths

    Full text link
    We introduce a new representation of the paths of the Forrester-Baxter RSOS models which represents the states of the irreducible modules of the minimal models M(p',p). This representation is obtained by transforming the RSOS paths, for the cases p> 2p'-2, to new paths for which horizontal edges are allowed at certain heights. These new paths are much simpler in that their weight is nothing but the sum of the position of the peaks. This description paves the way for the interpretation of the RSOS paths in terms of fermi-type charged particles out of which the fermionic characters could be obtained constructively. The derivation of the fermionic character for p'=2 and p=kp'+/- 1 is outlined. Finally, the particles of the RSOS paths are put in relation with the kinks and the breathers of the restricted sine-Gordon model.Comment: 15 pages, few typos corrected, version publishe

    Gas Absorption Detected from the Edge-on Debris Disk Surrounding HD32297

    Full text link
    Near-infrared and optical imaging of HD32297 indicate that it has an edge-on debris disk, similar to beta Pic. I present high resolution optical spectra of the NaI doublet toward HD32297 and stars in close angular proximity. A circumstellar absorption component is clearly observed toward HD32297 at the stellar radial velocity, which is not observed toward any of its neighbors, including the nearest only 0.9 arcmin away. An interstellar component is detected in all stars >90 pc, including HD32297, likely due to the interstellar material at the boundary of the Local Bubble. Radial velocity measurements of the nearest neighbors, BD+07 777s and BD+07 778, indicate that they are unlikely to be physically associated with HD32297. The measured circumstellar column density around HD32997, log N(NaI) ~ 11.4, is the strongest NaI absorption measured toward any nearby main sequence debris disk, even the prototypical edge-on debris disk, beta Pic. Assuming that the morphology and abundances of the gas component around HD32297 are similar to beta Pic, I estimate an upper limit to the gas mass in the circumstellar disk surrounding HD32297 of ~0.3 M_Earth.Comment: 13 pages, 2 figures; Accepted for publication in ApJ Letter

    Spin chains and channels with memory

    Get PDF
    In most studies of the channel capacity of quantum channels, it is assumed that the errors in each use of the channel are independent. However, recent work has begun to investigate the effects of memory or correlations in the error. This work has led to speculation that interesting non-analytic behaviour may occur in the capacity. Motivated by these observations, we connect the study of channel capacities under correlated error to the study of critical behaviour in many-body physics. This connection enables us the techniques of many-body physics to either completely solve or understand qualitatively a number of interesting models of correlated error. The models can display analogous behaviour to associated many-body systems, including `phase transitions'.Comment: V2: changes in presentation, some additional comments on generalisation. V3: In accordance with published version, most (but not all) details of proofs now included. A separate paper will shortly be submitted separately with all details and more result

    High ions towards white dwarfs: circumstellar line shifts and stellar temperature

    Full text link
    Based on a compilation of OVI, CIV, SiIV and NV data from IUE, FUSE, GHRS, STIS, and COS, we derive an anti- correlation between the stellar temperature and the high ion velocity shift w.r.t. to the photosphere, with positive (resp. negative) velocity shifts for the cooler (resp. hotter) white dwarfs. This trend probably reflects more than a single process, however such a dependence on the WD's temperature again favors a CS origin for a very large fraction of those ion absorptions, previously observed with IUE, HST-STIS, HST-GHRS, FUSE, and now COS, selecting objects for which absorption line radial velocities, stellar effective temperature and photospheric velocity can be found in the literature. Interestingly, and gas in near-equilibrium in the star vicinity. It is also probably significant that the temperature that corresponds to a null radial velocity, i.e. \simeq 50,000K, also corresponds to the threshold below which there is a dichotomy between pure or heavy elements atmospheres as well as some temperature estimates for and a form of balance between radiation pressure and gravitation. This is consistent with ubiquitous evaporation of orbiting dusty material. Together with the fact that the fraction of stars with (red-or blue-) shifted lines and the fraction of stars known to possess heavy species in their atmosphere are of the same order, such a velocity-temperature relationship is consistent with quasi-continuous evaporation of orbiting CS dusty material, followed by accretion and settling down in the photosphere. In view of these results, ion measurements close to the photospheric or the IS velocity should be interpreted with caution, especially for stars at intermediate temperatures. While tracing CS gas, they may be erroneously attributed to photospheric material or to the ISM, explaining the difficulty of finding a coherent pattern of the high ions in the local IS 3D distribution.Comment: Accepted by A&A. Body of paper identical to v1. This submission has a more appropriate truncation of the original abstrac
    • …
    corecore