377 research outputs found

    Simulation of low energy charged particle beams

    Get PDF
    Low energy particle beams pose specific challenges to simulation codes and experiments alike as a number of effects become important that can often be neglected at higher beam energies, including e.g. space-charge or fringe field effects. The optimization of low energy charged particle beam transport through arbitrary electromagnetic fields is the purpose of a code aimed at tracking low-energy particles from the sub-eV to the MeV energy range with high precision. The code is based on Matlab/Simulink and able to use 3-dimensional field maps from either Finite Elements Method (FEM) solvers, such as Comsol, OPERA 3D or CST particle studio, fields calculated by the code itself, or field maps from measurements. This paper describes the code structure and presents its performance limitations. It also gives a summary of results obtained from beam dynamics simulations of cyclotrons injection systems, storage ring extraction systems, electrostatic and magnetic beamlines, as well as from photocathode optimization studies

    Optimization of a short faraday cup for low-energy ions using numerical simulations

    Get PDF
    ISOLDE, the heavy-ion facility at CERN is undergoing a major upgrade with the installation of a superconducting LINAC that will allow post-acceleration of ion beams up to 10 MeV/u. In this framework, customized beam diag- nostics are being developed in order to fulfil the design re- quirements as well as to fit in the compact diagnostic boxes foreseen. The main detector of this system is a compact Faraday cup that will measure beam intensities in the range of 1 pA to 1 nA. In this contribution, simulation results of electrostatic fields and particle tracking are detailed for different Faraday cup prototypes taking into account the energy spectrum and angle of emission of the ion-induced secondary electrons

    Emittance measurements and operation optimization for ECR ion sources

    Get PDF
    Electron Cyclotron Resonance (ECR) ion sources supply a broad range of ions for post acceleration in cyclotrons. Here, an effort to improve the beam transfer from RIKEN's 18 GHz superconducting ECR ion source (SC ECRIS) to the Low Energy Beam Transfer (LEBT) line and an optimization of the performance of the ion source is presented. Simulation studies have shown that less than 20% of the beam is currently transferred. The first goal is to measure the transverse beam emittance in real time. The emittance monitor designed and fabricated for this purpose utilizes a pepper pot plate followed by a transparent scintillator and a CMOS camera for image capture. The second goal is to investigate on dependencies between beam emittance and various operating parameters. To this extent, modifications of the ion source took place, as well as a measurement of the magnetic field inside the ion source. In this contribution the design details of the instrument and a description of the algorithm are presented as well as a typical emittance measurement

    Alternative techniques for beam halo measurements

    Get PDF
    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection device (CID) technology. Special emphasis is given on a description of the characteristics of the latter system

    Measurements of the longitudinal energy distribution of low energy electrons

    Get PDF
    The Transverse Energy Spread Spectrometer (TESS) is an ASTeC experiment designed to measure the energy of electrons from different cathode materials. It is a dedicated test stand for future light sources. A full particle tracking code has been developed in the QUASAR Group, which simulates particle trajectories through TESS. Using this code it is possible to simulate different operational conditions of the experiment and cathode materials. The simulation results can then be benchmarked against experimental data to test the validity of the emission and beam transport model. Within this paper, results from simulation studies are presented and compared against experimental data as a collaboration within the Cockcroft Institute between ASTeC and the QUASAR Group for the case of measuring the longitudinal velocity distribution of electrons emitted from a gallium arsenide cathode using a grid structure as an energy filter
    corecore