6 research outputs found
In Vivo Transcription Dynamics of the Galactose Operon: A Study on the Promoter Transition from P1 to P2 at Onset of Stationary Phase
Quantitative analyses of the 5′ end of gal transcripts indicate that transcription from the galactose operon P1 promoter is higher during cell division. When cells are no longer dividing, however, transcription is initiated more often from the P2 promoter. Escherichia coli cells divide six times before the onset of the stationary phase when grown in LB containing 0.5% galactose at 37°C. Transcription from the two promoters increases, although at different rates, during early exponential phase (until the third cell division, OD600 0.4), and then reaches a plateau. The steady-state transcription from P1 continues in late exponential phase (the next three cell divisions, OD600 3.0), after which transcription from this promoter decreases. However, steady-state transcription from P2 continues 1 h longer into the stationary phase, before decreasing. This longer steady-state P2 transcription constitutes the promoter transition from P1 to P2 at the onset of the stationary phase. The intracellular cAMP concentration dictates P1 transcription dynamics; therefore, promoter transition may result from a lack of cAMP-CRP complex binding to the gal operon. The decay rate of gal-specific transcripts is constant through the six consecutive cell divisions that comprise the exponential growth phase, increases at the onset of the stationary phase, and is too low to be measured during the stationary phase. These data suggest that a regulatory mechanism coordinates the synthesis and decay of gal mRNAs to maintain the observed gal transcription. Our analysis indicates that the increase in P1 transcription is the result of cAMP-CRP binding to increasing numbers of galactose operons in the cell population
Intratracheal administration of endotoxin and cytokines: VIII. LPS induces E-selectin expression; anti-E-selectin and soluble E-selectin inhibit acute inflammation
E-selectin is an inducible endothelial adhesion molecule that binds neutrophils. E-selectin mRNA is not constitutively detectable in the lungs of rats. Intratracheal injection of LPS induces pulmonary E-selectin mRNA expression at 2–4 h. Intratracheal injection of LPS followed at 2 and 4 h by intravenous injection of mouse F(ab′) 2 or F(ab′)) anti-E-selectin monoclonal antibody inhibits the emigration of neutrophils into the bronchoalveolar space at 6 h by 50–70%. TNF and IL-6 bioactivity are not decreased in bronchoalveolar lavage fluid after treatment with anti-E-selectin antibody as compared to controls, suggesting that the anti-E-selectin does not affect the magnitude of the LPS-initiated cytokine cascade. Intratracheal injection of LPS followed at 2 and 4 h by intravenous injection of soluble E-selectin inhibits neutrophilic emigration at 6 h by 64%, suggesting that endogenous soluble E-selectin shed from activated endothelium may play a role in the endogenous down-regulation of acute inflammation. E-selectin-mediated adhesion of neutrophils to endothelium appears crucial to the full development of the acute inflammation response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44513/1/10753_2005_Article_BF01534436.pd
Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells
The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86(+),CD40(-) APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance
Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and functio
A Peptidomimetic that Specifically Inhibits Human Leukocyte Antigen DRB1 * 0401-restricted T Cell Proliferation 1
ABSTRACT The ability of a peptidomimetic (SC-67655) to block the peptide binding site of the rheumatoid arthritis-linked human leukocyte antigen encoded by the DRB1*0401 allele was evaluated. The inhibitor bound to purified DRB1*0401 molecules with an affinity similar to that of the well-characterized peptide ligand HA307-319. Cell binding assays demonstrated that, in contrast to the promiscuous HA307-319 peptide, the peptidomimetic was highly specific for DRB1*0401. The inhibitor also blocked functional T cell responses to peptide antigens but did not block T cell proliferation in response to protein antigens. Furthermore, it did not appear to be taken up by cells. An analog of the peptidomimetic that was conjugated to a signal peptide sequence did inhibit a T cell proliferative response to protein antigen. Thus, the peptidomimetic must be taken up by cells to block the presentation of peptides derived from protein antigens. These findings have implications for the rational development of inhibitors that block the class II peptide binding groove for the treatment of autoimmune diseases