453 research outputs found
Quasiparticle photoemission intensity in doped two-dimensional quantum antiferromagnets
Using the self-consistent Born approximation, and the corresponding wave
function of the magnetic polaron, we calculate the quasiparticle weight
corresponding to destruction of a real electron (in contrast to creation of a
spinless holon), as a funtion of wave vector for one hole in a generalized
model and the strong coupling limit of a generalized Hubbard model. The
results are in excellent agreement with those obtained by exact diagonalization
of a sufficiently large cluster. Only the Hubbard weigth compares very well
with photoemission measurements in Sr_2CuO_2Cl_2.Comment: 11 pages, latex, 3 figure
Dispersion of a single hole in the t-J model
The dispersion of a single hole in the t-J model obtained by the exact result
of 32 sites and the results obtained by self-consistent Born approximation and
the Green function Monte Carlo method can be simply derived by a mean-field
theory with d-RVB and antiferromagnetic order parameters. In addition, it
offers a simple explanation for the difference observed between those results.
The presence of the extended van Hove region at (pi,0) is a consequence of the
d-RVB pairing independenct of the antiferromagnetic order. Results including t'
and t" are also presented and explained consistently in a similar way.Comment: LaTex file, 5 pages with 5 embedded eps figure
Hubbard model versus t-J model: The one-particle spectrum
The origin of the apparent discrepancies between the one-particle spectra of
the Hubbard and t-J models is revealed: Wavefunction corrections, in addition
to the three-site terms, should supplement the bare t-J. In this way a
quantitative agreement between the two models is obtained, even for the
intermediate- values appropriate for the high-Tc cuprate superconductors.
Numerical results for clusters of up to 20 sites are presented. The momentum
dependence of the observed intensities in the photoemission spectra of
Sr2CuO2Cl2 are well described by this complete strong-coupling approach.Comment: 4 two-column RevTeX pages, including 4 Postscript figures. Uses epsf.
Accepted for publication in Physical Review B, Rapid Communicatio
A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator
We evaluate from first principles the self-consistent Hartree-Fock energies
for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott
insulator on a two-dimensional square lattice. We find that nearest-neighbor
Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton
pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate
coupling 3 < U/t <8. This stabilization is mediated through the generation of
``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes
cloaked by a meron-vortex in the spin-flux AFM background are charged bosons.
Our static Hartree-Fock calculations provide an upper bound on the energy of a
finite density of charged vortices. This upper bound is lower than the energy
of the corresponding charged stripe configurations. A finite density of charge
carrying vortices is shown to produce a large number of unoccupied electronic
levels in the Mott-Hubbard charge transfer gap. These levels lead to
significant band tailing and a broad mid-infrared band in the optical
absorption spectrum as observed experimentally. At very low doping (below 0.05)
the doping charges create extremely tightly bound meron-antimeron pairs or even
isolated conventional spin-polarons, whereas for very high doping (above 0.4)
the spin background itself becomes unstable to formation of a conventional
Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our
results point to the predominance of a quantum liquid of charged, bosonic,
vortex solitons at intermediate coupling and intermediate doping
concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some
figure
Holes in the t-J_z model: a thorough study
The t-J_z model is the strongly anisotropic limit of the t-J model which
captures some general properties of the doped antiferromagnets (AF). The
absence of spin fluctuations simplifies the analytical treatment of hole motion
in an AF background and allows us to calculate the single- and two-hole spectra
with high accuracy using regular diagram technique combined with real-space
approach. At the same time, numerical studies of this model via exact
diagonalization (ED) on small clusters show negligible finite size effects for
a number of quantities, thus allowing a direct comparison between analytical
and numerical results. Both approaches demonstrate that the holes have tendency
to pair in the p- and d-wave channels at realistic values of t/J. The
interactions leading to pairing and effects selecting p and d waves are
thoroughly investigated. The role of transverse spin fluctuations is considered
using perturbation theory. Based on the results of the present study, we
discuss the pairing problem in the realistic t-J-like model. Possible
implications for preformed pairs formation and phase separation are drawn.Comment: 21 pages, 15 figure
Quasiparticle vanishing driven by geometrical frustration
We investigate the single hole dynamics in the triangular t-J model. We study
the structure of the hole spectral function, assuming the existence of a 120
magnetic Neel order. Within the self-consistent Born approximation (SCBA) there
is a strong momentum and t sign dependence of the spectra, related to the
underlying magnetic structure and the particle-hole asymmetry of the model. For
positive t, and in the strong coupling regime, we find that the low energy
quasiparticle excitations vanish outside the neighbourhood of the magnetic
Goldstone modes; while for negative t the quasiparticle excitations are always
well defined. In the latter, we also find resonances of magnetic origin whose
energies scale as (J/t)^2/3 and can be identified with string excitations. We
argue that this complex structure of the spectra is due to the subtle interplay
between magnon-assisted and free hopping mechanisms. Our predictions are
supported by an excellent agreement between the SCBA and the exact results on
finite size clusters. We conclude that the conventional quasiparticle picture
can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio
Spectral density for a hole in an antiferromagnetic stripe phase
Using variational trial wave function based on the string picture we study
the motion of a single mobile hole in the stripe phase of the doped
antiferromagnet. The holes within the stripes are taken to be static, the
undoped antiferromagnetic domains in between the hole stripes are assumed to
have alternating staggered magnetization, as is suggested by neutron scattering
experiments. The system is described by the t-t'-t''-J model with realistic
parameters and we compute the single particle spectral density.Comment: RevTex-file, 9 PRB pages with 15 .eps and .gif files. To appear in
PRB. Hardcopies of figures (or the entire manuscript) can be obtained by
e-mail request to: [email protected]
A microscopic model for d-wave charge carrier pairing and non-Fermi-liquid behavior in a purely repulsive 2D electron system
We investigate a microscopic model for strongly correlated electrons with
both on-site and nearest neighbor Coulomb repulsion on a 2D square lattice.
This exhibits a state in which electrons undergo a ``somersault'' in their
internal spin-space (spin-flux) as they traverse a closed loop in external
coordinate space. When this spin-1/2 antiferromagnetic (AFM) insulator is
doped, the ground state is a liquid of charged, bosonic meron-vortices, which
for topological reasons are created in vortex-antivortex pairs. The magnetic
exchange energy of the distorted AFM background leads to a logarithmic
vortex-antivortex attraction which overcomes the direct Coulomb repulsion
between holes localized on the vortex cores. This leads to the appearance of
pre-formed charged pairs. We use the Configuration Interaction (CI) Method to
study the quantum translational and rotational motion of various charged
magnetic solitons and soliton pairs. The CI method systematically describes
fluctuation and quantum tunneling corrections to the Hartree-Fock Approximation
(HFA). We find that the lowest energy charged meron-antimeron pairs exhibit
d-wave rotational symmetry, consistent with the symmetry of the cuprate
superconducting order parameter. For a single hole in the 2D AFM plane, we find
a precursor to spin-charge separation in which a conventional charged
spin-polaron dissociates into a singly charged meron-antimeron pair. This model
provides a unified microscopic basis for (i) non-Fermi-liquid transport
properties, (ii) d-wave preformed charged carrier pairs, (iii) mid-infrared
optical absorption, (iv) destruction of AFM long range order with doping and
other magnetic properties, and (v) certain aspects of angled resolved
photo-emission spectroscopy (ARPES).Comment: 14 pages, 17 figure
Spin-charge separation in the single hole doped Mott antiferromagnet
The motion of a single hole in a Mott antiferromagnet is investigated based
on the t-J model. An exact expression of the energy spectrum is obtained, in
which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is
explicitly present. By identifying the phase string effect with spin backflow,
we point out that spin-charge separation must exist in such a system: the doped
hole has to decay into a neutral spinon and a spinless holon, together with the
phase string. We show that while the spinon remains coherent, the holon motion
is deterred by the phase string, resulting in its localization in space. We
calculate the electron spectral function which explains the line shape of the
spectral function as well as the ``quasiparticle'' spectrum observed in
angle-resolved photoemission experiments. Other analytic and numerical
approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.
Effect of pre-cardiac and adult stages of Dirofilaria immitis in pulmonary disease of cats: CBC, bronchial lavage cytology, serology, radiographs, CT images, bronchial reactivity, and histopathology
AbstractA controlled, blind study was conducted to define the initial inflammatory response and lung damage associated with the death of precardiac stages of Dirofilaria immitis in cats as compared to adult heartworm infections and normal cats. Three groups of six cats each were used: UU: uninfected untreated controls; PreS I: infected with 100 D. immitis L3 by subcutaneous injection and treated topically with selamectin 32 and 2 days pre-infection and once monthly for 8 months); IU: infected with 100 D. immitis L3 and left untreated. Peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected from all cats on Days 0, 70, 110, 168, and 240. CT images were acquired on Days 0, 110, and 240. Cats were euthanized, and necropsies were conducted on Day 240 to determine the presence of heartworms. Bronchial rings were collected for in vitro reactivity. Lung, heart, brain, kidney, and liver tissues were collected for histopathology. Results were compared for changes within each group. Pearson and Spearman correlations were performed for association between histologic, radiographic, serologic, hematologic and bronchoalveolar lavage (BAL) results. Infected cats treated with selamectin did not develop radiographically evident changes throughout the study, were heartworm antibody negative, and were free of adult heartworms and worm fragments at necropsy. Histologic lung scores and CT analysis were not significantly different between PreS I cats and UU controls. Subtle alveolar myofibrosis was noted in isolated areas of several PreS I cats and an eosinophilic BAL cytology was noted on Days 75 and 120. Bronchial ring reactivity was blunted in IU cats but was normal in PreS I and UU cats. The IU cats became antibody positive, and five cats developed adult heartworms. All cats with heartworms were antigen positive at one time point; but one cat was antibody positive, antigen negative, with viable adult females at necropsy. The CT revealed early involvement of all pulmonary arteries and a random pattern of parenchymal disease with severe lesions immediately adjacent to normal areas. Analysis of CT 3D reconstruction and Hounsfield units demonstrated lung disease consistent with restrictive pulmonary fibrosis with an interstitial infiltrate, absence of air trapping, and decrease in total lung volume in Group IU as compared to Groups UU and PreS I. The clinical implications of this study are that cats pretreated with selamectin 1 month before D. immitis L3 infection did not become serologically positive and did not develop pulmonary arterial hypertrophy and myofibrosis
- …