12,297 research outputs found
Computer aids for worst case electronic circuit design
Computer aids for worst case electronic circuit desig
Recommended from our members
On the Elevated Temperature Thermal Stability of Nanoscale Mn-Ni-Si Precipitates Formed at Lower Temperature in Highly Irradiated Reactor Pressure Vessel Steels.
Atom probe tomography (APT) and scanning transmission electron microscopy (STEM) techniques were used to probe the long-time thermal stability of nm-scale Mn-Ni-Si precipitates (MNSPs) formed in intermediate and high Ni reactor pressure vessel steels under high fluence neutron irradiation at â320â°C. Post irradiation annealing (PIA) at 425â°C for up to 57 weeks was used to determine if the MNSPs are: (a) non-equilibrium solute clusters formed and sustained by radiation induced segregation (RIS); or, (b) equilibrium G or Î2 phases, that precipitate at accelerated rates due to radiation enhanced diffusion (RED). Note the latter is consistent with both thermodynamic models and x-ray diffraction (XRD) measurements. Both the experimental and an independently calibrated cluster dynamics (CD) model results show that the stability of the MNSPs is very sensitive to the alloy Ni and, to a lesser extent, Mn content. Thus, a small fraction of the largest MNSPs in the high Ni steel persist, and begin to coarsen at long times. These results suggest that the MNSPs remain a stable phase, even at 105â°C higher than they formed at, thus are most certainly equilibrium phases at much lower service relevant temperatures of â290â°C
Momentum Dependence of Resonant Inelastic X-Ray Scattering Spectrum in Insulating Cuprates
The resonant inelastic x-ray scattering spectrum in insulating cuprates is
examined by using the exact diagonalization technique on small clusters in the
two-dimensional Hubbard model with second and third neighbor hopping terms.
When the incident photon energy is tuned near the Cu K absorption edges, we
find that the features of the unoccupied upper Hubbard band can be extracted
from the spectrum through an anisotropic momentum dependence. They provide an
opportunity for the understanding of the different behavior of hole- and
electron-doped superconductors.Comment: 4 pages with 4 figures, to be published in PR
Staging superstructures in high- Sr/O co-doped LaSrCuO
We present high energy X-ray diffraction studies on the structural phases of
an optimal high- superconductor LaSrCuO tailored by
co-hole-doping. This is specifically done by varying the content of two very
different chemical species, Sr and O, respectively, in order to study the
influence of each. A superstructure known as staging is observed in all
samples, with the staging number increasing for higher Sr dopings . We
find that the staging phases emerge abruptly with temperature, and can be
described as a second order phase transition with transition temperatures
slightly depending on the Sr doping. The Sr appears to correlate the
interstitial oxygen in a way that stabilises the reproducibility of the staging
phase both in terms of staging period and volume fraction in a specific sample.
The structural details as investigated in this letter appear to have no direct
bearing on the electronic phase separation previously observed in the same
samples. This provides new evidence that the electronic phase separation is
determined by the overall hole concentration rather than specific Sr/O content
and concommittant structural details.Comment: 8 pages, incl. 4 figure
Quasiparticle Liquid in the Highly Overdoped Bi2212
We present results from the study of a highly overdoped (OD) Bi2212 with a
K using high resolution angle-resolved photoemission spectroscopy.
The temperature dependent spectra near the () point show the presence of
the sharp peak well above . From the nodal direction, we make comparison
of the self-energy with the optimally doped and underdoped cuprates, and the
Mo(110) surface state. We show that this OD cuprate appears to have properties
that approach that of the Mo. Further analysis shows that the OD has a more
-independent lineshape at the Fermi surface than the lower-doped cuprates.
This allows for a realistic comparison of the nodal lifetime values to the
experimental resistivity measurements via Boltzmann transport formulation. All
these observations point to the validity of the quasiparticle picture for the
OD even in the normal state within a certain energy and momentum range.Comment: 4 pages, 4 figure
Chiral symmetry breaking and effective lagrangians for softly broken supersymmetric QCD
We study supersymmetric QCD with N_f<N_c in the limit of small
supersymmetry-breaking masses and smaller quark masses using the weak-coupling
Kahler potential. We calculate the full spectrum of this theory, which
manifests a chiral symmetry breaking pattern similar to that caused by the
strong interactions of the standard model. We derive the chiral effective
lagrangian for the pion degrees of freedom, and discuss the behavior in the
formal limit of large squark and gluino masses and for large N_c. We show that
the resulting scalings of the pion decay constant and pion masses in these
limits differ from those expected in ordinary nonsupersymmetric QCD. Although
there is no weak coupling expansion with N_f=N_c, we extend our results to this
case by constructing a superfield quantum modified constraint in the presence
of supersymmetry breaking.Comment: 16 pages, LaTe
Bioimpedance index for measurement of total body water in severely malnourished children: Assessing the effect of nutritional oedema
Restoration of body composition indicates successful management of severe acute malnutrition (SAM). Bioimpedance (BI) index (height(2)/resistance) is used to predict total body water (TBW) but its performance in SAM, especially with oedema, requires further investigation
- âŠ